Switch to: References

Add citations

You must login to add citations.
  1. Non‐elementary speed‐ups in logic calculi.Toshiyasu Arai - 2008 - Mathematical Logic Quarterly 54 (6):629-640.
    In this paper we show some non-elementary speed-ups in logic calculi: Both a predicative second-order logic and a logic for fixed points of positive formulas are shown to have non-elementary speed-ups over first-order logic. Also it is shown that eliminating second-order cut formulas in second-order logic has to increase sizes of proofs super-exponentially, and the same in eliminating second-order epsilon axioms. These are proved by relying on results due to P. Pudlák.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Efficient elimination of Skolem functions in $$\text {LK}^\text {h}$$ LK h.Ján Komara - 2022 - Archive for Mathematical Logic 61 (3):503-534.
    We present a sequent calculus with the Henkin constants in the place of the free variables. By disposing of the eigenvariable condition, we obtained a proof system with a strong locality property—the validity of each inference step depends only on its active formulas, not its context. Our major outcomes are: the cut elimination via a non-Gentzen-style algorithm without resorting to regularization and the elimination of Skolem functions with linear increase in the proof length for a subclass of derivations with cuts.
    Download  
     
    Export citation  
     
    Bookmark  
  • Number theory and elementary arithmetic.Jeremy Avigad - 2003 - Philosophia Mathematica 11 (3):257-284.
    is a fragment of first-order aritlimetic so weak that it cannot prove the totality of an iterated exponential fimction. Surprisingly, however, the theory is remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • On lengths of proofs in non-classical logics.Pavel Hrubeš - 2009 - Annals of Pure and Applied Logic 157 (2-3):194-205.
    We give proofs of the effective monotone interpolation property for the system of modal logic K, and others, and the system IL of intuitionistic propositional logic. Hence we obtain exponential lower bounds on the number of proof-lines in those systems. The main results have been given in [P. Hrubeš, Lower bounds for modal logics, Journal of Symbolic Logic 72 941–958; P. Hrubeš, A lower bound for intuitionistic logic, Annals of Pure and Applied Logic 146 72–90]; here, we give considerably simplified (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations