Switch to: References

Citations of:

Philosophical Relevance of Computers in Mathematics

In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press (2008)

Add citations

You must login to add citations.
  1. Mathematicians’ Assessments of the Explanatory Value of Proofs.Juan Pablo Mejía Ramos, Tanya Evans, Colin Rittberg & Matthew Inglis - 2021 - Axiomathes 31 (5):575-599.
    The literature on mathematical explanation contains numerous examples of explanatory, and not so explanatory proofs. In this paper we report results of an empirical study aimed at investigating mathematicians’ notion of explanatoriness, and its relationship to accounts of mathematical explanation. Using a Comparative Judgement approach, we asked 38 mathematicians to assess the explanatory value of several proofs of the same proposition. We found an extremely high level of agreement among mathematicians, and some inconsistencies between their assessments and claims in the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A fresh look at research strategies in computational cognitive science: The case of enculturated mathematical problem solving.Regina E. Fabry & Markus Pantsar - 2019 - Synthese 198 (4):3221-3263.
    Marr’s seminal distinction between computational, algorithmic, and implementational levels of analysis has inspired research in cognitive science for more than 30 years. According to a widely-used paradigm, the modelling of cognitive processes should mainly operate on the computational level and be targeted at the idealised competence, rather than the actual performance of cognisers in a specific domain. In this paper, we explore how this paradigm can be adopted and revised to understand mathematical problem solving. The computational-level approach applies methods from (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Understanding in mathematics: The case of mathematical proofs.Yacin Hamami & Rebecca Lea Morris - 2024 - Noûs 58 (4):1073-1106.
    Although understanding is the object of a growing literature in epistemology and the philosophy of science, only few studies have concerned understanding in mathematics. This essay offers an account of a fundamental form of mathematical understanding: proof understanding. The account builds on a simple idea, namely that understanding a proof amounts to rationally reconstructing its underlying plan. This characterization is fleshed out by specifying the relevant notion of plan and the associated process of rational reconstruction, building in part on Bratman's (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Unificatory Understanding and Explanatory Proofs.Joachim Frans - 2020 - Foundations of Science 26 (4):1105-1127.
    One of the central aims of the philosophical analysis of mathematical explanation is to determine how one can distinguish explanatory proofs from non-explanatory proofs. In this paper, I take a closer look at the current status of the debate, and what the challenges for the philosophical analysis of explanatory proofs are. In order to provide an answer to these challenges, I suggest we start from analysing the concept understanding. More precisely, I will defend four claims: understanding is a condition for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Functional explanation in mathematics.Matthew Inglis & Juan Pablo Mejía Ramos - 2019 - Synthese 198 (26):6369-6392.
    Mathematical explanations are poorly understood. Although mathematicians seem to regularly suggest that some proofs are explanatory whereas others are not, none of the philosophical accounts of what such claims mean has become widely accepted. In this paper we explore Wilkenfeld’s suggestion that explanations are those sorts of things that generate understanding. By considering a basic model of human cognitive architecture, we suggest that existing accounts of mathematical explanation are all derivable consequences of Wilkenfeld’s ‘functional explanation’ proposal. We therefore argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)From Euclidean geometry to knots and nets.Brendan Larvor - 2017 - Synthese:1-22.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Mark of Understanding: In Defense of an Ability Account.Sven Delarivière & Bart Van Kerkhove - 2021 - Axiomathes 31 (5):619-648.
    Understanding is a valued trait in any epistemic practice, scientific or not. Yet, when it comes to characterizing its nature, the notion has not received the philosophical attention it deserves. We have set ourselves three tasks in this paper. First, we defend the importance of this endeavor. Second, we consider and criticize a number of proposals to this effect. Third, we defend an alternative account, focusing on abilities as the proper mark of understanding.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Beauty, Understanding, and Discovery.Carlo Cellucci - 2015 - Foundations of Science 20 (4):339-355.
    In a very influential paper Rota stresses the relevance of mathematical beauty to mathematical research, and claims that a piece of mathematics is beautiful when it is enlightening. He stops short, however, of explaining what he means by ‘enlightening’. This paper proposes an alternative approach, according to which a mathematical demonstration or theorem is beautiful when it provides understanding. Mathematical beauty thus considered can have a role in mathematical discovery because it can guide the mathematician in selecting which hypothesis to (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Weak Objectivity of Mathematics and Its Reasonable Effectiveness in Science.Daniele Molinini - 2020 - Axiomathes 30 (2):149-163.
    Philosophical analysis of mathematical knowledge are commonly conducted within the realist/antirealist dichotomy. Nevertheless, philosophers working within this dichotomy pay little attention to the way in which mathematics evolves and structures itself. Focusing on mathematical practice, I propose a weak notion of objectivity of mathematical knowledge that preserves the intersubjective character of mathematical knowledge but does not bear on a view of mathematics as a body of mind-independent necessary truths. Furthermore, I show how that the successful application of mathematics in science (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)From Euclidean geometry to knots and nets.Brendan Larvor - 2019 - Synthese 196 (7):2715-2736.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations