Switch to: References

Add citations

You must login to add citations.
  1. Signs as a Theme in the Philosophy of Mathematical Practice.David Waszek - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer.
    Why study notations, diagrams, or more broadly the variety of nonverbal “representations” or “signs” that are used in mathematical practice? This chapter maps out recent work on the topic by distinguishing three main philosophical motivations for doing so. First, some work (like that on diagrammatic reasoning) studies signs to recover norms of informal or historical mathematical practices that would get lost if the particular signs that these practices rely on were translated away; work in this vein has the potential to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Motivated proofs: What they are, why they matter and how to write them.Rebecca Lea Morris - 2020 - Review of Symbolic Logic 13 (1):23-46.
    Mathematicians judge proofs to possess, or lack, a variety of different qualities, including, for example, explanatory power, depth, purity, beauty and fit. Philosophers of mathematical practice have begun to investigate the nature of such qualities. However, mathematicians frequently draw attention to another desirable proof quality: being motivated. Intuitively, motivated proofs contain no "puzzling" steps, but they have received little further analysis. In this paper, I begin a philosophical investigation into motivated proofs. I suggest that a proof is motivated if and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Philosophy of Mathematical Practice — Motivations, Themes and Prospects†.Jessica Carter - 2019 - Philosophia Mathematica 27 (1):1-32.
    A number of examples of studies from the field ‘The Philosophy of Mathematical Practice’ (PMP) are given. To characterise this new field, three different strands are identified: an agent-based, a historical, and an epistemological PMP. These differ in how they understand ‘practice’ and which assumptions lie at the core of their investigations. In the last part a general framework, capturing some overall structure of the field, is proposed.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Interpreting the Wigner–Eckart Theorem.Josh Hunt - 2021 - Studies in History and Philosophy of Science Part A 87 (C):28-43.
    The Wigner--Eckart theorem is central to the application of symmetry principles throughout atomic, molecular, and nuclear physics. Nevertheless, the theorem has a puzzling feature: it is dispensable for solving problems within these domains, since elementary methods suffice. To account for the significance of the theorem, I first contrast it with an elementary approach to calculating matrix elements. Next, I consider three broad strategies for interpreting the theorem: conventionalism, fundamentalism, and conceptualism. I argue that the conventionalist framework is unnecessarily pragmatic, while (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modularity in mathematics.Jeremy Avigad - 2020 - Review of Symbolic Logic 13 (1):47-79.
    In a wide range of fields, the word “modular” is used to describe complex systems that can be decomposed into smaller systems with limited interactions between them. This essay argues that mathematical knowledge can fruitfully be understood as having a modular structure and explores the ways in which modularity in mathematics is epistemically advantageous.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Character and object.Rebecca Morris & Jeremy Avigad - 2016 - Review of Symbolic Logic 9 (3):480-510.
    In 1837, Dirichlet proved that there are infinitely many primes in any arithmetic progression in which the terms do not all share a common factor. Modern presentations of the proof are explicitly higher-order, in that they involve quantifying over and summing over Dirichlet characters, which are certain types of functions. The notion of a character is only implicit in Dirichlet’s original proof, and the subsequent history shows a very gradual transition to the modern mode of presentation. In this essay, we (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations