Switch to: References

Add citations

You must login to add citations.
  1. Wittgenstein's critical Philosophy of Mathematical Practice.Frank Scheppers - 2024 - Philosophical Investigations 47 (4):440-460.
    On the one hand, I show that the later Wittgenstein's practice-based approach to meaning, including the idea that the meaningfulness of mathematics ultimately is rooted in the everyday ‘applications’ it emerged from, as well as his insistence on the variability in and contingency of mathematical and mathematics-like practices, foreshadows more recent work in Philosophy of Mathematical Practice (PMP), although Wittgenstein's approach was more radically practice-based than what is prevalent in present-day PMP. On the other hand, I also show that Wittgenstein's (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Practice-Based Approach to the Philosophy of Logic.Ben Martin - forthcoming - In Oxford Handbook for the Philosophy of Logic. Oxford University Press.
    Philosophers of logic are particularly interested in understanding the aims, epistemology, and methodology of logic. This raises the question of how the philosophy of logic should go about these enquires. According to the practice-based approach, the most reliable method we have to investigate the methodology and epistemology of a research field is by considering in detail the activities of its practitioners. This holds just as true for logic as it does for the recognised empirical and abstract sciences. If we wish (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Paving the cowpath in research within pure mathematics: A medium level model based on text driven variations.Karl Heuer & Deniz Sarikaya - 2023 - Studies in History and Philosophy of Science Part A 100 (C):39-46.
    Download  
     
    Export citation  
     
    Bookmark  
  • Introduction: From Social Ontology to Mathematical Practice, and Back Again.Paola Cantù & Italo Testa - 2023 - Topoi 42 (1):187-198.
    In this introductory essay we compare different strategies to study the possibility of applying philosophical theories of social ontology to mathematical practice and vice versa. Analyzing the contributions to the special issue Mathematical practice and social ontology, we distinguish four main strands: (1) to verify whether the very act of producing mathematical knowledge is an intersubjective activity; (2) to explain how the intersubjective nature of mathematics relates to mathematical objectivity; (3) to show how this intersubjectivity-based objectivity is the result of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Practice of Mathematics: Cognitive Resources and Conceptual Content.Valeria Giardino - 2023 - Topoi 42 (1):259-270.
    In the past 10 years, contemporary philosophy of mathematics has seen the development of a trend that conceives mathematics as first and foremost a human activity and in particular as a kind of practice. However, only recently the need for a general framework to account for the target of the so-called philosophy of mathematical practice has emerged. The purpose of the present article is to make progress towards the definition of a more precise general framework for the philosophy of mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Showing Mathematical Flies the Way Out of Foundational Bottles: The Later Wittgenstein as a Forerunner of Lakatos and the Philosophy of Mathematical Practice.José Antonio Pérez-Escobar - 2022 - Kriterion – Journal of Philosophy 36 (2):157-178.
    This work explores the later Wittgenstein’s philosophy of mathematics in relation to Lakatos’ philosophy of mathematics and the philosophy of mathematical practice. I argue that, while the philosophy of mathematical practice typically identifies Lakatos as its earliest of predecessors, the later Wittgenstein already developed key ideas for this community a few decades before. However, for a variety of reasons, most of this work on philosophy of mathematics has gone relatively unnoticed. Some of these ideas and their significance as precursors for (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The philosophy of logical practice.Ben Martin - 2022 - Metaphilosophy 53 (2-3):267-283.
    Metaphilosophy, Volume 53, Issue 2-3, Page 267-283, April 2022.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Three Roles of Empirical Information in Philosophy: Intuitions on Mathematics do Not Come for Free.Deniz Sarikaya, José Antonio Pérez-Escobar & Deborah Kant - 2021 - Kriterion – Journal of Philosophy 35 (3):247-278.
    This work gives a new argument for ‘Empirical Philosophy of Mathematical Practice’. It analyses different modalities on how empirical information can influence philosophical endeavours. We evoke the classical dichotomy between “armchair” philosophy and empirical/experimental philosophy, and claim that the latter should in turn be subdivided in three distinct styles: Apostate speculator, Informed analyst, and Freeway explorer. This is a shift of focus from the source of the information towards its use by philosophers. We present several examples from philosophy of mind/science (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What are mathematical diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance for a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Aritmética e conhecimento simbólico: notas sobre o Tractatus Logico-Philosophicus e o ensino de filosofia da matemática.Gisele Dalva Secco - 2020 - Perspectiva Filosófica 47 (2):120-149.
    Departing from and closing with reflections on issues regarding teaching practices of philosophy of mathematics, I propose a comparison between the main features of the Leibnizian notion of symbolic knowledge and some passages from the Tractatus on arithmetic. I argue that this reading allows (i) to shed a new light on the specificities of the Tractarian definition of number, compared to those of Frege and Russell; (ii) to highlight the understanding of the nature of mathematical knowledge as symbolic or formal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Group Knowledge and Mathematical Collaboration: A Philosophical Examination of the Classification of Finite Simple Groups.Joshua Habgood-Coote & Fenner Stanley Tanswell - 2023 - Episteme 20 (2):281-307.
    In this paper we apply social epistemology to mathematical proofs and their role in mathematical knowledge. The most famous modern collaborative mathematical proof effort is the Classification of Finite Simple Groups. The history and sociology of this proof have been well-documented by Alma Steingart (2012), who highlights a number of surprising and unusual features of this collaborative endeavour that set it apart from smaller-scale pieces of mathematics. These features raise a number of interesting philosophical issues, but have received very little (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Mathematical Explanation in Practice.Ellen Lehet - 2021 - Axiomathes 31 (5):553-574.
    The connection between understanding and explanation has recently been of interest to philosophers. Inglis and Mejía-Ramos (Synthese, 2019) propose that within mathematics, we should accept a functional account of explanation that characterizes explanations as those things that produce understanding. In this paper, I start with the assumption that this view of mathematical explanation is correct and consider what we can consequently learn about mathematical explanation. I argue that this view of explanation suggests that we should shift the question of explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Groundwork for a Fallibilist Account of Mathematics.Silvia De Toffoli - 2021 - Philosophical Quarterly 7 (4):823-844.
    According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too high. I then (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Proof, Explanation, and Justification in Mathematical Practice.Moti Mizrahi - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 51 (4):551-568.
    In this paper, I propose that applying the methods of data science to “the problem of whether mathematical explanations occur within mathematics itself” (Mancosu 2018) might be a fruitful way to shed new light on the problem. By carefully selecting indicator words for explanation and justification, and then systematically searching for these indicators in databases of scholarly works in mathematics, we can get an idea of how mathematicians use these terms in mathematical practice and with what frequency. The results of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lakatos' Undone Work: The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science - Introduction to the Special Issue on Lakatos’ Undone Work.Sophie Nagler, Hannah Pillin & Deniz Sarikaya - 2022 - Kriterion - Journal of Philosophy 36:1-10.
    We give an overview of Lakatos’ life, his philosophy of mathematics and science, as well as of this issue. Firstly, we briefly delineate Lakatos’ key contributions to philosophy: his anti-formalist philosophy of mathematics, and his methodology of scientific research programmes in the philosophy of science. Secondly, we outline the themes and structure of the masterclass Lakatos’ Undone Work – The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science, which gave rise to this special issue. Lastly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Otávio Bueno* and Steven French.**Applying Mathematics: Immersion, Inference, Interpretation. [REVIEW]Anthony F. Peressini - 2020 - Philosophia Mathematica 28 (1):116-127.
    Otávio Bueno* * and Steven French.** ** Applying Mathematics: Immersion, Inference, Interpretation. Oxford University Press, 2018. ISBN: 978-0-19-881504-4 978-0-19-185286-2. doi:10.1093/oso/9780198815044. 001.0001. Pp. xvii + 257.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Measuring the Agreement of Mathematical Peer Reviewers.Benedikt Löwe - forthcoming - Axiomathes:1-15.
    We investigate the possibility of arguing for or against the philosophical position that mathematics is an _epistemic exception_ on the basis of agreement data from the mathematical peer review process and argue that Cohen’s \(\kappa \), the standard agreement measure used for inter-rater agreement, is unable to detect epistemic exceptionality from peer review data.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Introduction to the Special Issue on Lakatos’ Undone Work.Deniz Sarikaya, Hannah Pillin & Sophie Nagler - 2022 - Kriterion – Journal of Philosophy 36 (2):113-122.
    We give an overview of Lakatos’ life, his philosophy of mathematics and science, as well as of this issue. Firstly, we briefly delineate Lakatos’ key contributions to philosophy: his anti-formalist philosophy of mathematics, and his methodology of scientific research programmes in the philosophy of science. Secondly, we outline the themes and structure of the masterclass Lakatos’ Undone Work – The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science​, which gave rise to this special issue. Lastly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Practice, Fictionalism and Social Ontology.Jessica Carter - 2022 - Topoi 42 (1):211-220.
    From the perspective of mathematical practice, I examine positions claiming that mathematical objects are introduced by human agents. I consider in particular mathematical fictionalism and a recent position on social ontology formulated by Cole (2013, 2015). These positions are able to solve some of the challenges that non-realist positions face. I argue, however, that mathematical entities have features other than fictional characters and social institutions. I emphasise that the way mathematical objects are introduced is different and point to the multifaceted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Progress — On Maddy and Beyond.Simon Weisgerber - 2023 - Philosophia Mathematica 31 (1):1-28.
    A key question of the ‘maverick’ tradition of the philosophy of mathematical practice is addressed, namely what is mathematical progress. The investigation is based on an article by Penelope Maddy devoted to this topic in which she considers only contributions ‘of some mathematical importance’ as progress. With the help of a case study from contemporary mathematics, more precisely from tropical geometry, a few issues with her proposal are identified. Taking these issues into consideration, an alternative account of ‘mathematical importance’, broadly (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • “Free rides” in Mathematics.Jessica Carter - 2021 - Synthese 199 (3-4):10475-10498.
    Representations, in particular diagrammatic representations, allegedly contribute to new insights in mathematics. Here I explore the phenomenon of a “free ride” and to what extent it occurs in mathematics. A free ride, according to Shimojima, is the property of some representations that whenever certain pieces of information have been represented then a new piece of consequential information can be read off for free. I will take Shimojima’s framework as a tool to analyse the occurrence and properties of them. I consider (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical problem-solving in scientific practice.Davide Rizza - 2021 - Synthese 199 (5-6):13621-13641.
    In this paper I study the activity of mathematical problem-solving in scientific practice, focussing on enquiries in mathematical social science. I identify three salient phases of mathematical problem-solving and adopt them as a reference frame to investigate aspects of applications that have not yet received extensive attention in the philosophical literature.
    Download  
     
    Export citation  
     
    Bookmark  
  • Prolegomena to virtue-theoretic studies in the philosophy of mathematics.James V. Martin - 2020 - Synthese 199 (1-2):1409-1434.
    Additional theorizing about mathematical practice is needed in order to ground appeals to truly useful notions of the virtues in mathematics. This paper aims to contribute to this theorizing, first, by characterizing mathematical practice as being epistemic and “objectual” in the sense of Knorr Cetina The practice turn in contemporary theory, Routledge, London, 2001). Then, it elaborates a MacIntyrean framework for extracting conceptions of the virtues related to mathematical practice so understood. Finally, it makes the case that Wittgenstein’s methodology for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • No Magic: From Phenomenology of Practice to Social Ontology of Mathematics.Mirja Hartimo & Jenni Rytilä - 2023 - Topoi 42 (1):283-295.
    The paper shows how to use the Husserlian phenomenological method in contemporary philosophical approaches to mathematical practice and mathematical ontology. First, the paper develops the phenomenological approach based on Husserl's writings to obtain a method for understanding mathematical practice. Then, to put forward a full-fledged ontology of mathematics, the phenomenological approach is complemented with social ontological considerations. The proposed ontological account sees mathematical objects as social constructions in the sense that they are products of culturally shared and historically developed practices. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein in Cantor's paradise.Karim Zahidi - 2024 - Philosophical Investigations 47 (4):484-500.
    This paper offers an evaluation of Wittgenstein's critique of Cantorian set theory, illustrating his broader philosophical stance on mathematics. By emphasizing the constructed nature of mathematical theories, Wittgenstein encourages a reflective approach to mathematics that acknowledges human agency in its development. His engagement with Cantorian set theory provides valuable insights into the philosophical and practical dimensions of mathematics, urging a reconsideration of its foundations and the nature of mathematical proofs. This perspective aligns closely with the philosophy of mathematical practice, which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Practical reasoning and the witnessably rigorous proof.Eric Livingston - 2020 - Synthese 199 (1-2):2277-2291.
    This paper introduces an anthropological approach to the foundations of mathematics. Traditionally, the philosophy of mathematics has focused on the nature and origins of mathematical truth. Mathematicians, however, treat mathematical arguments as determining mathematical truth: if an argument is found to describe a witnessably rigorous proof of a theorem, that theorem is considered—until the need for further examination arises—to be true. The anthropological question is how mathematicians, as a practical matter and as a matter of mathematical practice, make such determinations. (...)
    Download  
     
    Export citation  
     
    Bookmark