Switch to: References

Add citations

You must login to add citations.
  1. Kripke-style semantics for many-valued logics.Franco Montagna & Lorenzo Sacchetti - 2003 - Mathematical Logic Quarterly 49 (6):629.
    This paper deals with Kripke-style semantics for many-valued logics. We introduce various types of Kripke semantics, and we connect them with algebraic semantics. As for modal logics, we relate the axioms of logics extending MTL to properties of the Kripke frames in which they are valid. We show that in the propositional case most logics are complete but not strongly complete with respect to the corresponding class of complete Kripke frames, whereas in the predicate case there are important many-valued logics (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Fuzzy logics based on [0,1)-continuous uninorms.Dov Gabbay & George Metcalfe - 2007 - Archive for Mathematical Logic 46 (5-6):425-449.
    Axiomatizations are presented for fuzzy logics characterized by uninorms continuous on the half-open real unit interval [0,1), generalizing the continuous t-norm based approach of Hájek. Basic uninorm logic BUL is defined and completeness is established with respect to algebras with lattice reduct [0,1] whose monoid operations are uninorms continuous on [0,1). Several extensions of BUL are also introduced. In particular, Cross ratio logic CRL, is shown to be complete with respect to one special uninorm. A Gentzen-style hypersequent calculus is provided (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Characterization Of Classic-like Fuzzy Semantics.Benjamín Callejas Bedregal & Anderson Paiva Cruz - 2008 - Logic Journal of the IGPL 16 (4):357-370.
    There are several ways to extend the classic logical connectives for fuzzy truth degrees in such a way that their behavior for the values 0 and 1 work exactly as in the classical one. For each fuzzy semantics the formulas which are always true can change. But these sets are always a subset of the classical tautologies. The fuzzy semantics whose tautologies are identical to the classical tautologies are called here by “classic-like fuzzy semantics”. In this paper we will prove (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fuzzy logic.Petr Hajek - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Franco Montagna’s Work on Provability Logic and Many-valued Logic.Lev Beklemishev & Tommaso Flaminio - 2016 - Studia Logica 104 (1):1-46.
    Franco Montagna, a prominent logician and one of the leaders of the Italian school on Mathematical Logic, passed away on February 18, 2015. We survey some of his results and ideas in the two disciplines he greatly contributed along his career: provability logic and many-valued logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical fuzzy logics.Siegfried Gottwald - 2008 - Bulletin of Symbolic Logic 14 (2):210-239.
    The last decade has seen an enormous development in infinite-valued systems and in particular in such systems which have become known as mathematical fuzzy logics. The paper discusses the mathematical background for the interest in such systems of mathematical fuzzy logics, as well as the most important ones of them. It concentrates on the propositional cases, and mentions the first-order systems more superficially. The main ideas, however, become clear already in this restricted setting.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Fuzzy logic and arithmetical hierarchy III.Petr Hájek - 2001 - Studia Logica 68 (1):129-142.
    Fuzzy logic is understood as a logic with a comparative and truth-functional notion of truth. Arithmetical complexity of sets of tautologies and satisfiable sentences as well of sets of provable formulas of the most important systems of fuzzy predicate logic is determined or at least estimated.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Equational characterization of the subvarieties of BL generated by t-Norm algebras.Fransesc Esteva, Lluís Godo & Franco Montagna - 2004 - Studia Logica 76 (2):161 - 200.
    In this paper we show that the subvarieties of BL, the variety of BL-algebras, generated by single BL-chains on [0, 1], determined by continous t-norms, are finitely axiomatizable. An algorithm to check the subsethood relation between these subvarieties is provided, as well as another procedure to effectively find the equations of each subvariety. From a logical point of view, the latter corresponds to find the axiomatization of every residuated many-valued calculus defined by a continuous t-norm and its residuum. Actually, the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantifier Elimination and Other Model-Theoretic Properties of BL-Algebras.Tommaso Cortonesi, Enrico Marchioni & Franco Montagna - 2011 - Notre Dame Journal of Formal Logic 52 (4):339-379.
    This work presents a model-theoretic approach to the study of first-order theories of classes of BL-chains. Among other facts, we present several classes of BL-algebras, generating the whole variety of BL-algebras, whose first-order theory has quantifier elimination. Model-completeness and decision problems are also investigated. Then we investigate classes of BL-algebras having (or not having) the amalgamation property or the joint embedding property and we relate the above properties to the existence of ultrahomogeneous models.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hájek basic fuzzy logic and Łukasiewicz infinite-valued logic.Roberto Cignoli & Antoni Torrens - 2003 - Archive for Mathematical Logic 42 (4):361-370.
    Using the theory of BL-algebras, it is shown that a propositional formula ϕ is derivable in Łukasiewicz infinite valued Logic if and only if its double negation ˜˜ϕ is derivable in Hájek Basic Fuzzy logic. If SBL is the extension of Basic Logic by the axiom (φ & (φ→˜φ)) → ψ, then ϕ is derivable in in classical logic if and only if ˜˜ ϕ is derivable in SBL. Axiomatic extensions of Basic Logic are in correspondence with subvarieties of the (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations