Switch to: References

Add citations

You must login to add citations.
  1. Particles, objects, and physics.Justin Pniower - unknown
    This thesis analyses the ontological nature of quantum particles. In it I argue that quantum particles, despite their indistinguishability, are objects in much the same way as classical particles. This similarity provides an important point of continuity between classical and quantum physics. I consider two notions of indistinguishability, that of indiscernibility and permutation symmetry. I argue that neither sort of indistinguishability undermines the identity of quantum particles. I further argue that, when we understand in distinguishability in terms of permutation symmetry, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Constructing and constraining wave functions for identical quantum particles.Charles T. Sebens - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 56:48-59.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Conceptual Introduction to Nelson’s Mechanics.Guido Bacciagaluppi - unknown
    Nelson’s programme for a stochastic mechanics aims to derive the wave function and the Schroedinger equation from natural conditions on a diffusion process in configuration space. If successful, this pro- gramme might have some advantages over the better-known determin- istic pilot-wave theory of de Broglie and Bohm. The essential points of Nelson’s strategy are reviewed, with particular emphasis on concep- tual issues relating to the role of time symmetry. The main problem in Nelson’s approach is the lack of strict equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Conventionality of Parastatistics.David John Baker, Hans Halvorson & Noel Swanson - 2015 - British Journal for the Philosophy of Science 66 (4):929-976.
    Nature seems to be such that we can describe it accurately with quantum theories of bosons and fermions alone, without resort to parastatistics. This has been seen as a deep mystery: paraparticles make perfect physical sense, so why don’t we see them in nature? We consider one potential answer: every paraparticle theory is physically equivalent to some theory of bosons or fermions, making the absence of paraparticles in our theories a matter of convention rather than a mysterious empirical discovery. We (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations