Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Are Large Cardinal Axioms Restrictive?Neil Barton - 2023 - Philosophia Mathematica 31 (3):372-407.
    The independence phenomenon in set theory, while pervasive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper I question this claim. I show that there is a kind of maximality (namely absoluteness) on which large cardinal axioms come out as restrictive relative to a formal notion of restrictiveness. Within this framework, I argue that large cardinal axioms can still play many of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Elaine Landry,* ed. Categories for the Working Philosopher. [REVIEW]Neil Barton - 2020 - Philosophia Mathematica 28 (1):95-108.
    LandryElaine, * ed. Categories for the Working Philosopher. Oxford University Press, 2017. ISBN 978-0-19-874899-1 ; 978-0-19-106582-8. Pp. xiv + 471.
    Download  
     
    Export citation  
     
    Bookmark  
  • A model of the generic Vopěnka principle in which the ordinals are not Mahlo.Victoria Gitman & Joel David Hamkins - 2019 - Archive for Mathematical Logic 58 (1-2):245-265.
    The generic Vopěnka principle, we prove, is relatively consistent with the ordinals being non-Mahlo. Similarly, the generic Vopěnka scheme is relatively consistent with the ordinals being definably non-Mahlo. Indeed, the generic Vopěnka scheme is relatively consistent with the existence of a \-definable class containing no regular cardinals. In such a model, there can be no \-reflecting cardinals and hence also no remarkable cardinals. This latter fact answers negatively a question of Bagaria, Gitman and Schindler.
    Download  
     
    Export citation  
     
    Bookmark   6 citations