Often philosophers, logicians, and mathematicians employ a notion of intended structure when talking about a branch of mathematics. In addition, we know that there are foundational mathematical theories that can find representatives for the objects of informal mathematics. In this paper, we examine how faithfully foundational theories can represent intended structures, and show that this question is closely linked to the decidability of the theory of the intended structure. We argue that this sheds light on the trade-off between expressive power (...) and meta-theoretic properties when comparing first-order and second-order logic. (shrink)
The independence phenomenon in set theory, while pervasive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper, I argue that whether or not large cardinal axioms count as maximality principles depends on prior commitments concerning the richness of the subset forming operation. In particular I argue that there is a conception of maximality through absoluteness, on which large cardinal axioms are restrictive. (...) I argue, however, that large cardinals are still important axioms of set theory and can play many of their usual foundational roles. (shrink)
In this article, I survey some philosophical attitudes to talk concerning `the' universe of sets. I separate out four different strands of the debate, namely: (i) Universism, (ii) Multiversism, (iii) Potentialism, and (iv) Pluralism. I discuss standard arguments and counterarguments concerning the positions and some of the natural mathematical programmes that are suggested by the various views.
Informal rigour is the process by which we come to understand particular mathematical structures and then manifest this rigour through axiomatisations. Structural relativity is the idea that the kinds of structures we isolate are dependent upon the logic we employ. We bring together these ideas by considering the level of informal rigour exhibited by our set-theoretic discourse, and argue that different foundational programmes should countenance different underlying logics (intermediate between first- and second-order) for formulating set theory. By bringing considerations of (...) perturbations in modal space to bear on the debate, we will suggest that a promising option for representing current set-theoretic thought is given by formulating set theory using quasi-weak second-order logic. These observations indicate that the usual division of structures into \particular (e.g. the natural number structure) and general (e.g. the group structure) is perhaps too coarse grained; we should also make a distinction between intentionally and unintentionally general structures. (shrink)
A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often model-theoretic constructions that add sets to models are cited as evidence in favour of the latter. This paper informs this debate by developing a way for a Universist to interpret talk that (...) seems to necessitate the addition of sets to V. We argue that, despite the prima facie incoherence of such talk for the Universist, she nonetheless has reason to try and provide interpretation of this discourse. We present a method of interpreting extension-talk (V-logic), and show how it captures satisfaction in `ideal' outer models and relates to impredicative class theories. We provide some reasons to regard the technique as philosophically virtuous, and argue that it opens new doors to philosophical and mathematical discussions for the Universist. (shrink)
Discussion of new axioms for set theory has often focused on conceptions of maximality, and how these might relate to the iterative conception of set. This paper provides critical appraisal of how certain maximality axioms behave on different conceptions of ontology concerning the iterative conception. In particular, we argue that forms of multiversism and actualism face complementary problems. The latter view is unable to use maximality axioms that make use of extensions, where the former has to contend with the existence (...) of extensions violating maximality axioms. An analysis of two kinds of multiversism, a Zermelian form and Skolemite form, leads to the conclusion that the kind of maximality captured by an axiom differs substantially according to background ontology. (shrink)
In the contemporary philosophy of set theory, discussion of new axioms that purport to resolve independence necessitates an explanation of how they come to be justified. Ordinarily, justification is divided into two broad kinds: intrinsic justification relates to how `intuitively plausible' an axiom is, whereas extrinsic justification supports an axiom by identifying certain `desirable' consequences. This paper puts pressure on how this distinction is formulated and construed. In particular, we argue that the distinction as often presented is neither well-demarcated nor (...) sufficiently precise. Instead, we suggest that the process of justification in set theory should not be thought of as neatly divisible in this way, but should rather be understood as a conceptually indivisible notion linked to the goal of explanation. (shrink)
We introduce and consider the inner-model reflection principle, which asserts that whenever a statement \varphi(a) in the first-order language of set theory is true in the set-theoretic universe V, then it is also true in a proper inner model W \subset A. A stronger principle, the ground-model reflection principle, asserts that any such \varphi(a) true in V is also true in some non-trivial ground model of the universe with respect to set forcing. These principles each express a form of width (...) reflection in contrast to the usual height reflection of the Lévy–Montague reflection theorem. They are each equiconsistent with ZFC and indeed \Pi_2-conservative over ZFC, being forceable by class forcing while preserving any desired rank-initial segment of the universe. Furthermore, the inner-model reflection principle is a consequence of the existence of sufficient large cardinals, and lightface formulations of the reflection principles follow from the maximality principle MP and from the inner-model hypothesis IMH. We also consider some questions concerning the expressibility of the principles. (shrink)
A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often forcing constructions that add subsets to models are cited as evidence in favour of the latter. This paper informs this debate by analysing ways the Universist might interpret this discourse that seems (...) to necessitate the addition of subsets to V. We argue that despite the prima facie incoherence of such talk for the Universist, she nonetheless has reason to try and provide interpretation of this discourse. We analyse extant interpretations of such talk, and analyse various tradeoffs in naturality that might be made. We conclude that the Universist has promising options for interpreting different forcing constructions. (shrink)
Much of the discussion of set-theoretic independence, and whether or not we could legitimately expand our foundational theory, concerns how we could possibly come to know the truth value of independent sentences. This paper pursues a slightly different tack, examining how we are ignorant of issues surrounding their truth. We argue that a study of how we are ignorant reveals a need for an understanding of set-theoretic explanation and motivates a pluralism concerning the adoption of foundational theory.
Set-theoretic and category-theoretic foundations represent different perspectives on mathematical subject matter. In particular, category-theoretic language focusses on properties that can be determined up to isomorphism within a category, whereas set theory admits of properties determined by the internal structure of the membership relation. Various objections have been raised against this aspect of set theory in the category-theoretic literature. In this article, we advocate a methodological pluralism concerning the two foundational languages, and provide a theory that fruitfully interrelates a `structural' perspective (...) to a set-theoretic one. We present a set-theoretic system that is able to talk about structures more naturally, and argue that it provides an important perspective on plausibly structural properties such as cardinality. We conclude the language of set theory can provide useful information about the notion of mathematical structure. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.