Switch to: References

Add citations

You must login to add citations.
  1. The Value of Revolutionary Science.Ivano Zanzarella - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  • Gregory’s Sixth Operation.Tiziana Bascelli, Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Tahl Nowik, David M. Schaps & David Sherry - 2018 - Foundations of Science 23 (1):133-144.
    In relation to a thesis put forward by Marx Wartofsky, we seek to show that a historiography of mathematics requires an analysis of the ontology of the part of mathematics under scrutiny. Following Ian Hacking, we point out that in the history of mathematics the amount of contingency is larger than is usually thought. As a case study, we analyze the historians’ approach to interpreting James Gregory’s expression ultimate terms in his paper attempting to prove the irrationality of \. Here (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Is Leibnizian calculus embeddable in first order logic?Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Taras Kudryk, Thomas Mormann & David Sherry - 2017 - Foundations of Science 22 (4):73 - 88.
    To explore the extent of embeddability of Leibnizian infinitesimal calculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on pro- cedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in Leibnizian infinitesimal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fermat’s Dilemma: Why Did He Keep Mum on Infinitesimals? And the European Theological Context.Jacques Bair, Mikhail G. Katz & David Sherry - 2018 - Foundations of Science 23 (3):559-595.
    The first half of the 17th century was a time of intellectual ferment when wars of natural philosophy were echoes of religious wars, as we illustrate by a case study of an apparently innocuous mathematical technique called adequality pioneered by the honorable judge Pierre de Fermat, its relation to indivisibles, as well as to other hocus-pocus. André Weil noted that simple applications of adequality involving polynomials can be treated purely algebraically but more general problems like the cycloid curve cannot be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Infinite Lotteries, Spinners, Applicability of Hyperreals†.Emanuele Bottazzi & Mikhail G. Katz - 2021 - Philosophia Mathematica 29 (1):88-109.
    We analyze recent criticisms of the use of hyperreal probabilities as expressed by Pruss, Easwaran, Parker, and Williamson. We show that the alleged arbitrariness of hyperreal fields can be avoided by working in the Kanovei–Shelah model or in saturated models. We argue that some of the objections to hyperreal probabilities arise from hidden biases that favor Archimedean models. We discuss the advantage of the hyperreals over transferless fields with infinitesimals. In Paper II we analyze two underdetermination theorems by Pruss and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Toward a History of Mathematics Focused on Procedures.Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze & David Sherry - 2017 - Foundations of Science 22 (4):763-783.
    Abraham Robinson’s framework for modern infinitesimals was developed half a century ago. It enables a re-evaluation of the procedures of the pioneers of mathematical analysis. Their procedures have been often viewed through the lens of the success of the Weierstrassian foundations. We propose a view without passing through the lens, by means of proxies for such procedures in the modern theory of infinitesimals. The real accomplishments of calculus and analysis had been based primarily on the elaboration of novel techniques for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Cauchy’s Infinitesimals, His Sum Theorem, and Foundational Paradigms.Tiziana Bascelli, Piotr Błaszczyk, Alexandre Borovik, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, David M. Schaps & David Sherry - 2018 - Foundations of Science 23 (2):267-296.
    Cauchy's sum theorem is a prototype of what is today a basic result on the convergence of a series of functions in undergraduate analysis. We seek to interpret Cauchy’s proof, and discuss the related epistemological questions involved in comparing distinct interpretive paradigms. Cauchy’s proof is often interpreted in the modern framework of a Weierstrassian paradigm. We analyze Cauchy’s proof closely and show that it finds closer proxies in a different modern framework.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bolzano’s Infinite Quantities.Kateřina Trlifajová - 2018 - Foundations of Science 23 (4):681-704.
    In his Foundations of a General Theory of Manifolds, Georg Cantor praised Bernard Bolzano as a clear defender of actual infinity who had the courage to work with infinite numbers. At the same time, he sharply criticized the way Bolzano dealt with them. Cantor’s concept was based on the existence of a one-to-one correspondence, while Bolzano insisted on Euclid’s Axiom of the whole being greater than a part. Cantor’s set theory has eventually prevailed, and became a formal basis of contemporary (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Controversies in the Foundations of Analysis: Comments on Schubring’s Conflicts.Piotr Błaszczyk, Vladimir Kanovei, Mikhail G. Katz & David Sherry - 2017 - Foundations of Science 22 (1):125-140.
    Foundations of Science recently published a rebuttal to a portion of our essay it published 2 years ago. The author, G. Schubring, argues that our 2013 text treated unfairly his 2005 book, Conflicts between generalization, rigor, and intuition. He further argues that our attempt to show that Cauchy is part of a long infinitesimalist tradition confuses text with context and thereby misunderstands the significance of Cauchy’s use of infinitesimals. Here we defend our original analysis of various misconceptions and misinterpretations concerning (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Infinitesimal analysis without the Axiom of Choice.Karel Hrbacek & Mikhail G. Katz - 2021 - Annals of Pure and Applied Logic 172 (6):102959.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Leibniz on Bodies and Infinities: Rerum Natura and Mathematical Fictions.Mikhail G. Katz, Karl Kuhlemann, David Sherry & Monica Ugaglia - 2024 - Review of Symbolic Logic 17 (1):36-66.
    The way Leibniz applied his philosophy to mathematics has been the subject of longstanding debates. A key piece of evidence is his letter to Masson on bodies. We offer an interpretation of this often misunderstood text, dealing with the status of infinite divisibility innature, rather than inmathematics. In line with this distinction, we offer a reading of the fictionality of infinitesimals. The letter has been claimed to support a reading of infinitesimals according to which they are logical fictions, contradictory in (...)
    Download  
     
    Export citation  
     
    Bookmark