Is Leibnizian calculus embeddable in first order logic?

Foundations of Science 22 (4):73 - 88 (2017)
Download Edit this record How to cite View on PhilPapers
Abstract
To explore the extent of embeddability of Leibnizian infinitesimal calculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on pro- cedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in Leibnizian infinitesimal calculus, then modern infinitesimal frameworks are more appropriate to interpreting Leibnizian infinitesimal calculus than modern Weierstrassian ones.
Categories
(categorize this paper)
Reprint years
2017
ISBN(s)
PhilPapers/Archive ID
BLAILC
Revision history
Archival date: 2016-06-03
View upload history
References found in this work BETA
Interpreting the Infinitesimal Mathematics of Leibniz and Euler.Bair, Jacques; Błaszczyk, Piotr; Ely, Robert; Henry, Valérie; Kanovei, Vladimir; Katz, Karin U.; Katz, Mikhail G.; Kutateladze, Semen S.; McGaffey, Thomas; Reeder, Patrick; Schaps, David M.; Sherry, David & Shnider, Steven

View all 24 references / Add more references

Citations of this work BETA
The Mathematical Intelligencer Flunks the Olympics.Gutman, Alexander E.; Katz, Mikhail G.; Kudryk, Taras S. & Kutateladze, Semen S.

Add more citations

Added to PP index
2016-06-01

Total views
172 ( #21,988 of 46,317 )

Recent downloads (6 months)
54 ( #15,077 of 46,317 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks to external links.