Switch to: References

Add citations

You must login to add citations.
  1. Residuated Structures and Orthomodular Lattices.D. Fazio, A. Ledda & F. Paoli - 2021 - Studia Logica 109 (6):1201-1239.
    The variety of residuated lattices includes a vast proportion of the classes of algebras that are relevant for algebraic logic, e.g., \-groups, Heyting algebras, MV-algebras, or De Morgan monoids. Among the outliers, one counts orthomodular lattices and other varieties of quantum algebras. We suggest a common framework—pointed left-residuated \-groupoids—where residuated structures and quantum structures can all be accommodated. We investigate the lattice of subvarieties of pointed left-residuated \-groupoids, their ideals, and develop a theory of left nuclei. Finally, we extend some (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Finch’s Conditions for the Completion of Orthomodular Posets.D. Fazio, A. Ledda & F. Paoli - 2020 - Foundations of Science 28 (1):419-440.
    In this paper, we aim at highlighting the significance of the A- and B-properties introduced by Finch (Bull Aust Math Soc 2:57–62, 1970b). These conditions turn out to capture interesting structural features of lattices of closed subspaces of complete inner vector spaces. Moreover, we generalise them to the context of effect algebras, establishing a novel connection between quantum structures (orthomodular posets, orthoalgebras, effect algebras) arising from the logico-algebraic approach to quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Crawley Completions of Residuated Lattices and Algebraic Completeness of Substructural Predicate Logics.Hiroakira Ono - 2012 - Studia Logica 100 (1-2):339-359.
    This paper discusses Crawley completions of residuated lattices. While MacNeille completions have been studied recently in relation to logic, Crawley completions (i.e. complete ideal completions), which are another kind of regular completions, have not been discussed much in this relation while many important algebraic works on Crawley completions had been done until the end of the 70’s. In this paper, basic algebraic properties of ideal completions and Crawley completions of residuated lattices are studied first in their conncetion with the join (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations