Switch to: References

Add citations

You must login to add citations.
  1. A Conventionalist Account of Distinctively Mathematical Explanation.Mark Povich - 2023 - Philosophical Problems in Science 74:171–223.
    Distinctively mathematical explanations (DMEs) explain natural phenomena primarily by appeal to mathematical facts. One important question is whether there can be an ontic account of DME. An ontic account of DME would treat the explananda and explanantia of DMEs as ontic structures and the explanatory relation between them as an ontic relation (e.g., Pincock 2015, Povich 2021). Here I present a conventionalist account of DME, defend it against objections, and argue that it should be considered ontic. Notably, if indeed it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation.Mark Povich - 2024 - Oxford University Press USA.
    One central aim of science is to provide explanations of natural phenomena. What role(s) does mathematics play in achieving this aim? How does mathematics contribute to the explanatory power of science? Rules to Infinity defends the thesis, common though perhaps inchoate among many members of the Vienna Circle, that mathematics contributes to the explanatory power of science by expressing conceptual rules, rules which allow the transformation of empirical descriptions. Mathematics should not be thought of as describing, in any substantive sense, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Mystery of Applied Mathematics?: A Case Study in Mathematical Development Involving the Fractional Derivative†: Articles.Sheldon R. Smith - 2014 - Philosophia Mathematica 22 (1):35-69.
    I discuss the applicability of mathematics via a detailed case study involving a family of mathematical concepts known as ‘fractional derivatives.’ Certain formulations of the mystery of applied mathematics would lead one to believe that there ought to be a mystery about the applicability of fractional derivatives. I argue, however, that there is no clear mystery about their applicability. Thus, via this case study, I think that one can come to see more clearly why certain formulations of the mystery of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reifying mathematics? Prediction and symmetry classification.Sorin Bangu - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):239-258.
    In this paper I reconstruct and critically examine the reasoning leading to the famous prediction of the ‘omega minus’ particle by M. Gell-Mann and Y. Ne’eman (in 1962) on the basis of a symmetry classification scheme. While the peculiarity of this prediction has occasionally been noticed in the literature, a detailed treatment of the methodological problems it poses has not been offered yet. By spelling out the characteristics of this type of prediction, I aim to underscore the challenges raised by (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The ‘Miracle’ of Applicability? The Curious Case of the Simple Harmonic Oscillator.Sorin Bangu & Robert H. C. Moir - 2018 - Foundations of Physics 48 (5):507-525.
    The paper discusses to what extent the conceptual issues involved in solving the simple harmonic oscillator model fit Wigner’s famous point that the applicability of mathematics borders on the miraculous. We argue that although there is ultimately nothing mysterious here, as is to be expected, a careful demonstration that this is so involves unexpected difficulties. Consequently, through the lens of this simple case we derive some insight into what is responsible for the appearance of mystery in more sophisticated examples of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wigner’s Puzzle for Mathematical Naturalism.Sorin Bangu - 2009 - International Studies in the Philosophy of Science 23 (3):245-263.
    I argue that a recent version of the doctrine of mathematical naturalism faces difficulties arising in connection with Wigner's old puzzle about the applicability of mathematics to natural science. I discuss the strategies to solve the puzzle and I show that they may not be available to the naturalist.
    Download  
     
    Export citation  
     
    Bookmark   2 citations