Switch to: References

Add citations

You must login to add citations.
  1. Gender Prediction from Retinal Fundus Using Deep Learning.Ashraf M. Taha, Qasem M. M. Zarandah, Bassem S. Abu-Nasser, Zakaria K. D. AlKayyali & Samy S. Abu-Naser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (5):57-63.
    Deep learning may transform health care, but model development has largely been dependent on availability of advanced technical expertise. The aim of this study is to develop a deep learning model to predict the gender from retinal fundus images. The proposed model was based on the Xception pre-trained model. The proposed model was trained on 20,000 retinal fundus images from Kaggle depository. The dataset was preprocessed them split into three datasets (training, validation, Testing). After training and cross-validating the proposed model, (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Harnessing Artificial Intelligence for Effective Leadership: Opportunities and Challenges.Sabreen R. Qwaider, Mohammed M. Abu-Saqer, Islam Albatish, Azmi H. Alsaqqa, Basem S. Abunasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (8):6-11.
    Abstract: The integration of Artificial Intelligence (AI) into leadership practices is transforming organizational dynamics and This decision-making processes. paper explores how AI can enhance leadership effectiveness by providing data-driven insights, optimizing decision-making, and automating routine tasks. It also examines the challenges leaders face in adopting AI, including ethical considerations, potential biases in AI systems, and the need for upskilling. By analyzing current applications of AI in leadership and discussing future trends, this study aims to provide a comprehensive overview of the (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Sarcasm Detection in Headline News using Machine and Deep Learning Algorithms.Alaa Barhoom, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2022 - International Journal of Engineering and Information Systems (IJEAIS) 6 (4):66-73.
    Abstract: Sarcasm is commonly used in news and detecting sarcasm in headline news is challenging for humans and thus for computers. The media regularly seem to engage sarcasm in their news headline to get the attention of people. However, people find it tough to detect the sarcasm in the headline news, hence receiving a mistaken idea about that specific news and additionally spreading it to their friends, colleagues, etc. Consequently, an intelligent system that is able to distinguish between can sarcasm (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Ethics in AI: Balancing Innovation and Responsibility.Mosa M. M. Megdad, Mohammed H. S. Abueleiwa, Mohammed Al Qatrawi, Jehad El-Tantaw, Fadi E. S. Harara, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Pedagogical Research (IJAPR) 8 (9):20-25.
    Abstract: As artificial intelligence (AI) technologies become more integrated across various sectors, ethical considerations in their development and application have gained critical importance. This paper delves into the complex ethical landscape of AI, addressing significant challenges such as bias, transparency, privacy, and accountability. It explores how these issues manifest in AI systems and their societal impact, while also evaluating current strategies aimed at mitigating these ethical concerns, including regulatory frameworks, ethical guidelines, and best practices in AI design. Through a comprehensive (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • AI in Climate Change Mitigation.Mohammad Alnajjar, Mohammed Hazem M. Hamadaqa, Mohammed N. Ayyad, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research (IJAER) 8 (10):31-37.
    Abstract: Climate change presents a critical challenge that demands advanced analytical tools to predict and mitigate its impacts. This paper explores the role of artificial intelligence (AI) in enhancing climate modeling, emphasizing how AI-driven methods are revolutionizing our understanding and response to climate change. By integrating machine learning algorithms with diverse data sources such as satellite imagery, historical climate records, and real-time sensor data, AI improves the accuracy, efficiency, and granularity of climate predictions. The paper reviews key AI techniques, including (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Prediction of Heart Disease Using a Collection of Machine and Deep Learning Algorithms.Ali M. A. Barhoom, Abdelbaset Almasri, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2022 - International Journal of Engineering and Information Systems (IJEAIS) 6 (4):1-13.
    Abstract: Heart diseases are increasing daily at a rapid rate and it is alarming and vital to predict heart diseases early. The diagnosis of heart diseases is a challenging task i.e. it must be done accurately and proficiently. The aim of this study is to determine which patient is more likely to have heart disease based on a number of medical features. We organized a heart disease prediction model to identify whether the person is likely to be diagnosed with a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations