Switch to: References

Add citations

You must login to add citations.
  1. The dissipative approach to quantum field theory: conceptual foundations and ontological implications.Andrea Oldofredi & Hans Christian Öttinger - 2020 - European Journal for Philosophy of Science 11 (1):1-36.
    Many attempts have been made to provide Quantum Field Theory with conceptually clear and mathematically rigorous foundations; remarkable examples are the Bohmian and the algebraic perspectives respectively. In this essay we introduce the dissipative approach to QFT, a new alternative formulation of the theory explaining the phenomena of particle creation and annihilation starting from nonequilibrium thermodynamics. It is shown that DQFT presents a rigorous mathematical structure, and a clear particle ontology, taking the best from the mentioned perspectives. Finally, after the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • No-Go Theorems and the Foundations of Quantum Physics.Andrea Oldofredi - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (3):355-370.
    In the history of quantum physics several no-go theorems have been proved, and many of them have played a central role in the development of the theory, such as Bell’s or the Kochen–Specker theorem. A recent paper by F. Laudisa has raised reasonable doubts concerning the strategy followed in proving some of these results, since they rely on the standard framework of quantum mechanics, a theory that presents several ontological problems. The aim of this paper is twofold: on the one (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Particles, Cutoffs and Inequivalent Representations: Fraser and Wallace on Quantum Field Theory.Matthias Egg, Vincent Lam & Andrea Oldofredi - 2017 - Foundations of Physics 47 (3):453-466.
    We critically review the recent debate between Doreen Fraser and David Wallace on the interpretation of quantum field theory, with the aim of identifying where the core of the disagreement lies. We show that, despite appearances, their conflict does not concern the existence of particles or the occurrence of unitarily inequivalent representations. Instead, the dispute ultimately turns on the very definition of what a quantum field theory is. We further illustrate the fundamental differences between the two approaches by comparing them (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Relationalism about mechanics based on a minimalist ontology of matter.Antonio Vassallo, Dirk-André Deckert & Michael Esfeld - 2016 - European Journal for Philosophy of Science:1-20.
    This paper elaborates on relationalism about space and time as motivated by a minimalist ontology of the physical world: there are only matter points that are individuated by the distance relations among them, with these relations changing. We assess two strategies to combine this ontology with physics, using classical mechanics as example: the Humean strategy adopts the standard, non-relationalist physical theories as they stand and interprets their formal apparatus as the means of bookkeeping of the change of the distance relations (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Scientific realism and underdetermination in quantum theory.Matthias Egg & Juha Saatsi - 2021 - Philosophy Compass 16 (11):e12773.
    This paper surveys the status of scientific realism in relation to quantum physics, focusing on the problem of underdetermination.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Individuality and the Account of Nonlocality: The Case for the Particle Ontology in Quantum Physics.Michael Esfeld - 2019 - In Olimpia Lombardi (ed.), Quantum Worlds: Perspectives on the Ontology of Quantum Mechanics. New York, NY: Cambridge University Press. pp. 222--244.
    The paper explains why an ontology of permanent point particles that are individuated by their relative positions and that move on continuous trajectories as given by a deterministic law of motion constitutes the best solution to the measurement problem in both quantum mechanics and quantum field theory. This case is made by comparing the Bohmian theory to collapse theories such as the GRW matter density and the GRW flash theory. It is argued that the Bohmian theory makes the minimal changes, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • What is matter? The fundamental ontology of atomism and structural realism.Michael Esfeld, Dirk-André Deckert & Andrea Oldofredi - forthcoming - In B. Lower and A. Ijjas (ed.), A guide to the philosophy of Cosmology. Oxford University Press.
    We set out a fundamental ontology of atomism in terms of matter points. While being most parsimonious, this ontology is able to match both classical and quantum mechanics, and it remains a viable option for any future theory of cosmology that goes beyond current quantum physics. The matter points are structurally individuated: all there is to them are the spatial relations in which they stand; neither a commitment to intrinsic properties nor to an absolute space is required. The spatial relations (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Particle Creation and Annihilation: Two Bohmian Approaches.Andrea Oldofredi - 2018 - Lato Sensu: Revue de la Société de Philosophie des Sciences 5 (1):77-85.
    This paper reviews and discusses two extensions of Bohmian Mechanics to the phenomena of particle creation and annihilation typically observed in Quantum Field Theory : the so-called Bell-type Quantum Field Theory and the Dirac Sea representation. These theories have a secure metaphysical basis as they postulate a particle ontology while satisfying the requirements imposed by the Primitive Ontology approach to quantum physics. Furthermore, their methodological perspective intentionally provides a set of rules to immunize physical theories to the conceptual and technical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On quantum entanglement, counterfactuals, causality and dispositions.Tomasz Bigaj - 2020 - Synthese 197 (10):4161-4185.
    The existence of non-local correlations between outcomes of measurements in quantum entangled systems strongly suggests that we are dealing with some form of causation here. An assessment of this conjecture in the context of the collapse interpretation of quantum mechanics is the primary goal of this paper. Following the counterfactual approach to causation, I argue that the details of the underlying causal mechanism which could explain the non-local correlations in entangled states strongly depend on the adopted semantics for counterfactuals. Several (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Particles, fields, and the measurement of electron spin.Charles T. Sebens - 2020 - Synthese 198 (12):11943-11975.
    This article compares treatments of the Stern–Gerlach experiment across different physical theories, building up to a novel analysis of electron spin measurement in the context of classical Dirac field theory. Modeling the electron as a classical rigid body or point particle, we can explain why the entire electron is always found at just one location on the detector but we cannot explain why there are only two locations where the electron is ever found. Using non-relativistic or relativistic quantum mechanics, we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Stochasticity and Bell-type quantum field theory.Andrea Oldofredi - 2020 - Synthese 197 (2):731-750.
    This paper critically discusses an objection proposed by Nikolić against the naturalness of the stochastic dynamics implemented by the Bell-type quantum field theory, an extension of Bohmian mechanics able to describe the phenomena of particles creation and annihilation. Here I present: Nikolić’s ideas for a pilot-wave theory accounting for QFT phenomenology evaluating the robustness of his criticism, Bell’s original proposal for a Bohmian QFT with a particle ontology and the mentioned Bell-type QFT. I will argue that although Bell’s model should (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A persistent particle ontology for QFT in terms of the Dirac sea.Dirk-André Deckert, Michael Esfeld & Andrea Oldofredi - forthcoming - British Journal for the Philosophy of Science.
    We show that the Bohmian approach in terms of persisting particles that move on continuous trajectories following a deterministic law can be literally applied to QFT. By means of the Dirac sea model – exemplified in the electron sector of the standard model neglecting radiation – we explain how starting from persisting particles, one is led to standard QFT employing creation and annihilation operators when tracking the dynamics with respect to a reference state, the so-called vacuum. Since on the level (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Against the disappearance of spacetime in quantum gravity.Michael Esfeld - 2019 - Synthese 199 (2):355-369.
    This paper argues against the proposal to draw from current research into a physical theory of quantum gravity the ontological conclusion that spacetime or spatiotemporal relations are not fundamental. As things stand, the status of this proposal is like the one of all the other claims about radical changes in ontology that were made during the development of quantum mechanics and quantum field theory. However, none of these claims held up to scrutiny as a consequence of the physics once the (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A Persistent Particle Ontology for Quantum Field Theory in Terms of the Dirac Sea.Dirk-André Deckert, Michael Esfeld & Andrea Oldofredi - 2019 - British Journal for the Philosophy of Science 70 (3):747-770.
    We show that the Bohmian approach in terms of persisting particles that move on continuous trajectories following a deterministic law can be literally applied to quantum field theory. By means of the Dirac sea model—exemplified in the electron sector of the standard model neglecting radiation—we explain how starting from persisting particles, one is led to standard QFT employing creation and annihilation operators when tracking the dynamics with respect to a reference state, the so-called vacuum. Since on the level of wave (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations