Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Fragments of Martin's axiom and δ13 sets of reals.Joan Bagaria - 1994 - Annals of Pure and Applied Logic 69 (1):1-25.
    We strengthen a result of Harrington and Shelah by showing that, unless ω1 is an inaccessible cardinal in L, a relatively weak fragment of Martin's axiom implies that there exists a δ13 set of reals without the property of Baire.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Closed measure zero sets.Tomek Bartoszynski & Saharon Shelah - 1992 - Annals of Pure and Applied Logic 58 (2):93-110.
    Bartoszynski, T. and S. Shelah, Closed measure zero sets, Annals of Pure and Applied Logic 58 93–110. We study the relationship between the σ-ideal generated by closed measure zero sets and the ideals of null and meager sets. We show that the additivity of the ideal of closed measure zero sets is not bigger than covering for category. As a consequence we get that the additivity of the ideal of closed measure zero sets is equal to the additivity of the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Fragments of Martin's axiom and δ< sup> 1< sub> 3 sets of reals.Joan Bagaria - 1994 - Annals of Pure and Applied Logic 69 (1):1-25.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Density zero slaloms.Janusz Pawlikowski - 2000 - Annals of Pure and Applied Logic 103 (1-3):39-53.
    We construct a G δ set G ⊆ ω ω ×2 ω with null vertical sections such that each perfect set P ⊆2 ω meets almost all vertical sections of G in the following sense: we can define from P subsets S of ω of density zero such that whenever the section determined by x ∈ ω ω does not meet P , then x ∈ S for all but finitely many i . This generalizes theorems of Mokobodzki and Brendle (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Amoeba reals.Haim Judah & Miroslav Repickẏ - 1995 - Journal of Symbolic Logic 60 (4):1168-1185.
    We define the ideal with the property that a real omits all Borel sets in the ideal which are coded in a transitive model if and only if it is an amoeba real over this model. We investigate some other properties of this ideal. Strolling through the "amoeba forest" we gain as an application a modification of the proof of the inequality between the additivities of Lebesgue measure and Baire category.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Coarse computability, the density metric, Hausdorff distances between Turing degrees, perfect trees, and reverse mathematics.Denis R. Hirschfeldt, Carl G. Jockusch & Paul E. Schupp - 2023 - Journal of Mathematical Logic 24 (2).
    For [Formula: see text], the coarse similarity class of A, denoted by [Formula: see text], is the set of all [Formula: see text] such that the symmetric difference of A and B has asymptotic density 0. There is a natural metric [Formula: see text] on the space [Formula: see text] of coarse similarity classes defined by letting [Formula: see text] be the upper density of the symmetric difference of A and B. We study the metric space of coarse similarity classes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Combinatorial properties of Hechler forcing.Jörg Brendle, Haim Judah & Saharon Shelah - 1992 - Annals of Pure and Applied Logic 58 (3):185-199.
    Brendle, J., H. Judah and S. Shelah, Combinatorial properties of Hechler forcing, Annals of Pure and Applied Logic 59 185–199. Using a notion of rank for Hechler forcing we show: assuming ωV1 = ωL1, there is no real in V[d] which is eventually different from the reals in L[ d], where d is Hechler over V; adding one Hechler real makes the invariants on the left-hand side of Cichoń's diagram equal ω1 and those on the right-hand side equal 2ω and (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations