Switch to: References

Add citations

You must login to add citations.
  1. Entanglement and disentanglement in relativistic quantum mechanics.Jeffrey A. Barrett - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (2):168-174.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Approximate Truth and Descriptive Nesting.Jeffrey Alan Barrett - 2008 - Erkenntnis 68 (2):213-224.
    There is good reason to suppose that our best physical theories, quantum mechanics and special relativity, are false if taken together and literally. If they are in fact false, then how should they count as providing knowledge of the physical world? One might imagine that, while strictly false, our best physical theories are nevertheless in some sense probably approximately true. This paper presents a notion of local probable approximate truth in terms of descriptive nesting relations between current and subsequent theories. (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Reconciling Spacetime and the Quantum: Relational Blockworld and the Quantum Liar Paradox. [REVIEW]William Mark Stuckey, Michael Silbserstein & Michael Cifone - 2008 - Foundations of Physics 38 (4):348-383.
    The Relational Blockworld (RBW) interpretation of non-relativistic quantum mechanics (NRQM) is introduced. Accordingly, the spacetime of NRQM is a relational, non-separable blockworld whereby spatial distance is only defined between interacting trans-temporal objects. RBW is shown to provide a novel statistical interpretation of the wavefunction that deflates the measurement problem, as well as a geometric account of quantum entanglement and non-separability that satisfies locality per special relativity and is free of interpretative mystery. We present RBW’s acausal and adynamical resolution of the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Why quantum mechanics favors adynamical and acausal interpretations such as relational blockworld over backwardly causal and time-symmetric rivals.Michael Silberstein, Michael Cifone & William Mark Stuckey - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):736-751.
    We articulate the problems posed by the quantum liar experiment (QLE) for backwards causation interpretations of quantum mechanics, time-symmetric accounts and other dynamically oriented local hidden variable theories. We show that such accounts cannot save locality in the case of QLE merely by giving up “lambda-independence.” In contrast, we show that QLE poses no problems for our acausal Relational Blockworld interpretation of quantum mechanics, which invokes instead adynamical global constraints to explain Einstein–Podolsky–Rosen (EPR) correlations and QLE. We make the case (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Conspiracy theories of quantum mechanics.Peter J. Lewis - 2006 - British Journal for the Philosophy of Science 57 (2):359-381.
    It has long been recognized that a local hidden variable theory of quantum mechanics can in principle be constructed, provided one is willing to countenance pre-measurement correlations between the properties of measured systems and measuring devices. However, this ‘conspiratorial’ approach is typically dismissed out of hand. In this article I examine the justification for dismissing conspiracy theories of quantum mechanics. I consider the existing arguments against such theories, and find them to be less than conclusive. I suggest a more powerful (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Lorentz-Invariant, Retrocausal, and Deterministic Hidden Variables.Aurélien Drezet - 2019 - Foundations of Physics 49 (10):1166-1199.
    We review several no-go theorems attributed to Gisin and Hardy, Conway and Kochen purporting the impossibility of Lorentz-invariant deterministic hidden-variable model for explaining quantum nonlocality. Those theorems claim that the only known solution to escape the conclusions is either to accept a preferred reference frame or to abandon the hidden-variable program altogether. Here we present a different alternative based on a foliation dependent framework adapted to deterministic hidden variables. We analyse the impact of such an approach on Bohmian mechanics and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Wigner's friend and bell's field beables.Jeffrey A. Barrett - unknown
    A field-theoretic version of Wigner’s friend (1961) illustrates how the quantum measurement problem arises for field theory. Similarly, considering spacelike separate measurements of entangled fields by observers akin to Wigner’s friend shows the sense in which relativistic constraints make the measurement problem particularly difficult to resolve in the context of a relativistic field theory. We will consider proposals by Wigner (1961), Bloch (1967), Helwig and Kraus (1970), and Bell (1984) for resolving the measurement problem for quantum field theory. We will (...)
    Download  
     
    Export citation  
     
    Bookmark