Switch to: References

Add citations

You must login to add citations.
  1. Understanding realism.Collin Rice - 2019 - Synthese 198 (5):4097-4121.
    Catherine Elgin has recently argued that a nonfactive conception of understanding is required to accommodate the epistemic successes of science that make essential use of idealizations and models. In this paper, I argue that the fact that our best scientific models and theories are pervasively inaccurate representations can be made compatible with a more nuanced form of scientific realism that I call Understanding Realism. According to this view, science aims at (and often achieves) factive scientific understanding of natural phenomena. I (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Optimality explanations: a plea for an alternative approach.Collin Rice - 2012 - Biology and Philosophy 27 (5):685-703.
    Recently philosophers of science have begun to pay more attention to the use of highly idealized mathematical models in scientific theorizing. An important example of this kind of highly idealized modeling is the widespread use of optimality models within evolutionary biology. One way to understand the explanations provided by these models is as a censored causal explanation: an explanation that omits certain causal factors in order to focus on a modular subset of the causal processes that led to the explanandum. (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Modeling multiscale patterns: active matter, minimal models, and explanatory autonomy.Collin Rice - 2022 - Synthese 200 (6):1-35.
    Both ecologists and statistical physicists use a variety of highly idealized models to study active matter and self-organizing critical phenomena. In this paper, I show how universality classes play a crucial role in justifying the application of highly idealized ‘minimal’ models to explain and understand the critical behaviors of active matter systems across a wide range of scales and scientific fields. Appealing to universality enables us to see why the same minimal models can be used to explain and understand behaviors (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Models Don’t Decompose That Way: A Holistic View of Idealized Models.Collin Rice - 2019 - British Journal for the Philosophy of Science 70 (1):179-208.
    Many accounts of scientific modelling assume that models can be decomposed into the contributions made by their accurate and inaccurate parts. These accounts then argue that the inaccurate parts of the model can be justified by distorting only what is irrelevant. In this paper, I argue that this decompositional strategy requires three assumptions that are not typically met by our best scientific models. In response, I propose an alternative view in which idealized models are characterized as holistically distorted representations that (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Moving Beyond Causes: Optimality Models and Scientific Explanation.Collin Rice - 2013 - Noûs 49 (3):589-615.
    A prominent approach to scientific explanation and modeling claims that for a model to provide an explanation it must accurately represent at least some of the actual causes in the event's causal history. In this paper, I argue that many optimality explanations present a serious challenge to this causal approach. I contend that many optimality models provide highly idealized equilibrium explanations that do not accurately represent the causes of their target system. Furthermore, in many contexts, it is in virtue of (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Idealized models, holistic distortions, and universality.Collin Rice - 2018 - Synthese 195 (6):2795-2819.
    In this paper, I first argue against various attempts to justify idealizations in scientific models that explain by showing that they are harmless and isolable distortions of irrelevant features. In response, I propose a view in which idealized models are characterized as providing holistically distorted representations of their target system. I then suggest an alternative way that idealized modeling can be justified by appealing to universality.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • How to Reconcile a Unified Account of Explanation with Explanatory Diversity.Collin Rice & Yasha Rohwer - 2020 - Foundations of Science 26 (4):1025-1047.
    The concept of explanation is central to scientific practice. However, scientists explain phenomena in very different ways. That is, there are many different kinds of explanation; e.g. causal, mechanistic, statistical, or equilibrium explanations. In light of the myriad kinds of explanation identified in the literature, most philosophers of science have adopted some kind of explanatory pluralism. While pluralism about explanation seems plausible, it faces a dilemma Explanation beyond causation, Oxford University Press, Oxford, pp 39–56, 2018). Either there is nothing that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Factive scientific understanding without accurate representation.Collin C. Rice - 2016 - Biology and Philosophy 31 (1):81-102.
    This paper analyzes two ways idealized biological models produce factive scientific understanding. I then argue that models can provide factive scientific understanding of a phenomenon without providing an accurate representation of the features of their real-world target system. My analysis of these cases also suggests that the debate over scientific realism needs to investigate the factive scientific understanding produced by scientists’ use of idealized models rather than the accuracy of scientific models themselves.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Explanatory schema and the process of model building.Collin Rice, Yasha Rohwer & André Ariew - 2019 - Synthese 196 (11):4735-4757.
    In this paper, we argue that rather than exclusively focusing on trying to determine if an idealized model fits a particular account of scientific explanation, philosophers of science should also work on directly analyzing various explanatory schemas that reveal the steps and justification involved in scientists’ use of highly idealized models to formulate explanations. We develop our alternative methodology by analyzing historically important cases of idealized statistical modeling that use a three-step explanatory schema involving idealization, mathematical operation, and explanatory interpretation.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Understanding (with) Toy Models.Alexander Reutlinger, Dominik Hangleiter & Stephan Hartmann - 2018 - British Journal for the Philosophy of Science 69 (4):1069-1099.
    Toy models are highly idealized and extremely simple models. Although they are omnipresent across scientific disciplines, toy models are a surprisingly under-appreciated subject in the philosophy of science. The main philosophical puzzle regarding toy models concerns what the epistemic goal of toy modelling is. One promising proposal for answering this question is the claim that the epistemic goal of toy models is to provide individual scientists with understanding. The aim of this article is to precisely articulate and to defend this (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Understanding (With) Toy Models.Alexander Reutlinger, Dominik Hangleiter & Stephan Hartmann - 2016 - British Journal for the Philosophy of Science:axx005.
    Toy models are highly idealized and extremely simple models. Although they are omnipresent across scientific disciplines, toy models are a surprisingly under-appreciated subject in the philosophy of science. The main philosophical puzzle regarding toy models is that it is an unsettled question what the epistemic goal of toy modeling is. One promising proposal for answering this question is the claim that the epistemic goal of toy models is to provide individual scientists with understanding. The aim of this paper is to (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Why Is There Universal Macrobehavior? Renormalization Group Explanation as Noncausal Explanation.Alexander Reutlinger - 2014 - Philosophy of Science 81 (5):1157-1170.
    Renormalization group (RG) methods are an established strategy to explain how it is possible that microscopically different systems exhibit virtually the same macro behavior when undergoing phase-transitions. I argue – in agreement with Robert Batterman – that RG explanations are non-causal explanations. However, Batterman misidentifies the reason why RG explanations are non-causal: it is not the case that an explanation is non- causal if it ignores causal details. I propose an alternative argument, according to which RG explanations are non-causal explanations (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Do Statistical Laws Solve the 'Problem of Provisos'?Alexander Reutlinger - 2014 - Erkenntnis 79 (S10):1759-1773.
    In their influential paper “Ceteris Paribus, There is No Problem of Provisos”, Earman and Roberts (Synthese 118:439–478, 1999) propose to interpret the non-strict generalizations of the special sciences as statistical generalizations about correlations. I call this view the “statistical account”. Earman and Roberts claim that statistical generalizations are not qualified by “non-lazy” ceteris paribus conditions. The statistical account is an attractive view, since it looks exactly like what everybody wants: it is a simple and intelligible theory of special science laws (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Are Causal Facts Really Explanatorily Emergent? Ladyman and Ross on Higher-level Causal Facts and Renormalization Group Explanation.Alexander Reutlinger - 2017 - Synthese 194 (7):2291-2305.
    In their Every Thing Must Go, Ladyman and Ross defend a novel version of Neo- Russellian metaphysics of causation, which falls into three claims: (1) there are no fundamental physical causal facts (orthodox Russellian claim), (2) there are higher-level causal facts of the special sciences, and (3) higher-level causal facts are explanatorily emergent. While accepting claims (1) and (2), I attack claim (3). Ladyman and Ross argue that higher-level causal facts are explanatorily emergent, because (a) certain aspects of these higher-level (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Emergent Causation.Simon Prosser - 2012 - Philosophical Studies 159 (1):21-39.
    Downward causation is commonly held to create problems for ontologically emergent properties. In this paper I describe two novel examples of ontologically emergent properties and show how they avoid two main problems of downward causation, the causal exclusion problem and the causal closure problem. One example involves an object whose colour does not logically supervene on the colours of its atomic parts. The other example is inspired by quantum entanglement cases but avoids controversies regarding quantum mechanics. These examples show that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Minimal Models and the Generalized Ontic Conception of Scientific Explanation.Mark Povich - 2018 - British Journal for the Philosophy of Science 69 (1):117-137.
    Batterman and Rice ([2014]) argue that minimal models possess explanatory power that cannot be captured by what they call ‘common features’ approaches to explanation. Minimal models are explanatory, according to Batterman and Rice, not in virtue of accurately representing relevant features, but in virtue of answering three questions that provide a ‘story about why large classes of features are irrelevant to the explanandum phenomenon’ ([2014], p. 356). In this article, I argue, first, that a method (the renormalization group) they propose (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Causal patterns and adequate explanations.Angela Potochnik - 2015 - Philosophical Studies 172 (5):1163-1182.
    Causal accounts of scientific explanation are currently broadly accepted (though not universally so). My first task in this paper is to show that, even for a causal approach to explanation, significant features of explanatory practice are not determined by settling how causal facts bear on the phenomenon to be explained. I then develop a broadly causal approach to explanation that accounts for the additional features that I argue an explanation should have. This approach to explanation makes sense of several aspects (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • A Neurathian Conception of the Unity of Science.Angela Potochnik - 2011 - Erkenntnis 74 (3):305-319.
    An historically important conception of the unity of science is explanatory reductionism, according to which the unity of science is achieved by explaining all laws of science in terms of their connection to microphysical law. There is, however, a separate tradition that advocates the unity of science. According to that tradition, the unity of science consists of the coordination of diverse fields of science, none of which is taken to have privileged epistemic status. This alternate conception has roots in Otto (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Modeling reality.Christopher Pincock - 2011 - Synthese 180 (1):19 - 32.
    My aim in this paper is to articulate an account of scientific modeling that reconciles pluralism about modeling with a modest form of scientific realism. The central claim of this approach is that the models of a given physical phenomenon can present different aspects of the phenomenon. This allows us, in certain special circumstances, to be confident that we are capturing genuine features of the world, even when our modeling occurs independently of a wholly theoretical motivation. This framework is illustrated (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Mathematical Idealization.Chris Pincock - 2007 - Philosophy of Science 74 (5):957-967.
    Mathematical idealizations are scientific representations that result from assumptions that are believed to be false, and where mathematics plays a crucial role. I propose a two stage account of how to rank mathematical idealizations that is largely inspired by the semantic view of scientific theories. The paper concludes by considering how this approach to idealization allows for a limited form of scientific realism. ‡I would like to thank Robert Batterman, Gabriele Contessa, Eric Hiddleston, Nicholaos Jones, and Susan Vineberg for helpful (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • How to avoid inconsistent idealizations.Christopher Pincock - 2014 - Synthese 191 (13):2957-2972.
    Idealized scientific representations result from employing claims that we take to be false. It is not surprising, then, that idealizations are a prime example of allegedly inconsistent scientific representations. I argue that the claim that an idealization requires inconsistent beliefs is often incorrect and that it turns out that a more mathematical perspective allows us to understand how the idealization can be interpreted consistently. The main example discussed is the claim that models of ocean waves typically involve the false assumption (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Exploring the boundaries of conceptual evaluation.Christopher Pincock - 2010 - Philosophia Mathematica 18 (1):106-121.
    This is a critical notice of Mark Wilson's Wandering Significance.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Role for Mathematics in the Physical Sciences.Chris Pincock - 2007 - Noûs 41 (2):253-275.
    Conflicting accounts of the role of mathematics in our physical theories can be traced to two principles. Mathematics appears to be both (1) theoretically indispensable, as we have no acceptable non-mathematical versions of our theories, and (2) metaphysically dispensable, as mathematical entities, if they existed, would lack a relevant causal role in the physical world. I offer a new account of a role for mathematics in the physical sciences that emphasizes the epistemic benefits of having mathematics around when we do (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Abstract Explanations in Science.Christopher Pincock - 2014 - British Journal for the Philosophy of Science 66 (4):857-882.
    This article focuses on a case that expert practitioners count as an explanation: a mathematical account of Plateau’s laws for soap films. I argue that this example falls into a class of explanations that I call abstract explanations.explanations involve an appeal to a more abstract entity than the state of affairs being explained. I show that the abstract entity need not be causally relevant to the explanandum for its features to be explanatorily relevant. However, it remains unclear how to unify (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Can asymptotic models be explanatory?Mark Pexton - 2014 - European Journal for Philosophy of Science 4 (2):233-252.
    Asymptotic models in which singular limits are taken are very common in physics. They are often used to investigate the general behaviour of systems undergoing rapid, discontinuous, changes. The singularities in the mathematics of these systems have no physical counterparts; these models operate by containing non-physically interpretable fictional elements. As such there is an intuition that states that asymptotics only offer descriptions of systems not explanations of them. By contrast, in different areas of science other models containing fictional elements which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Emergence and interacting hierarchies in shock physics.Mark Pexton - 2016 - European Journal for Philosophy of Science 6 (1):91-122.
    It is argued that explanations of shock waves display explanatory emergence in two different ways. Firstly, the use of discontinuities to model jumps in flow variables is an example of “physics avoidance”. This is where microphysical details can be ignored in an abstract model thus allowing us access to modal information which cannot be attained in principle in any other way. Secondly, Whitham’s interleaving criterion for continuous shock structure is an example of the way different characteristic scales interact in shock (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How dimensional analysis can explain.Mark Pexton - 2014 - Synthese 191 (10):2333-2351.
    Dimensional analysis can offer us explanations by allowing us to answer What-if–things-had-been-different? questions rather than in virtue of, say, unifying diverse phenomena, important as that is. Additionally, it is argued that dimensional analysis is a form of modelling as it involves several of the aspects crucial in modelling, such as misrepresenting aspects of a target system. By highlighting the continuities dimensional analysis has with forms of modelling we are able to describe more precisely what makes dimensional analysis explanatory and understand (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • From Euler to Navier–Stokes: A Spatial Analysis of Conceptual Changes in Nineteenth-century Fluid Dynamics.Graciana Petersen & Frank Zenker - 2014 - International Studies in the Philosophy of Science 28 (3):235-253.
    This article provides a spatial analysis of the conceptual framework of fluid dynamics during the nineteenth century, focusing on the transition from the Euler equation to the Navier–Stokes equation. A dynamic version of Peter Gärdenfors's theory of conceptual spaces is applied which distinguishes changes of five types: addition and deletion of special laws; change of metric; change in importance; change in separability; addition and deletion of dimensions. The case instantiates all types but the deletion of dimensions. We also provide a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • “Explain” in scientific discourse.James A. Overton - 2013 - Synthese 190 (8):1383-1405.
    The philosophical literature on scientific explanation contains a striking diversity of accounts. I use novel empirical methods to address this fragmentation and assess the importance and generality of explanation in science. My evidence base is a set of 781 articles from one year of the journal Science, and I begin by applying text mining techniques to discover patterns in the usage of “explain” and other words of philosophical interest. I then use random sampling from the data set to develop and (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Approximation and Idealization: Why the Difference Matters.John D. Norton - 2012 - Philosophy of Science 79 (2):207-232.
    It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected, even inconsistent properties, familiar limit systems used in statistical physics can fail to provide idealizations, but are merely approximations. A dominance argument suggests that the limiting idealizations of statistical physics should be demoted to approximations.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • Truth-Seeking by Abduction.Ilkka Niiniluoto - 2018 - Cham, Switzerland: Springer.
    This book examines the philosophical conception of abductive reasoning as developed by Charles S. Peirce, the founder of American pragmatism. It explores the historical and systematic connections of Peirce's original ideas and debates about their interpretations. Abduction is understood in a broad sense which covers the discovery and pursuit of hypotheses and inference to the best explanation. The analysis presents fresh insights into this notion of reasoning, which derives from effects to causes or from surprising observations to explanatory theories. The (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Scientific Discovery as a Topic for Philosophy of Science: Some Personal Reflections.Tom Nickles - 2020 - Topoi 39 (4):841-845.
    This is a brief, personal retrospective on developments in the treatment of scientific discovery by philosophers, since about 1970.
    Download  
     
    Export citation  
     
    Bookmark  
  • Feminist Philosophy of Science.Lynn Hankinson Nelson - 2002 - In Peter Machamer & Michael Silberstein (eds.), The Blackwell Guide to the Philosophy of Science. Oxford, UK: Blackwell. pp. 312–331.
    This chapter contains sections titled: Highlights of Past Literature Current Work Future Work.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical Structure and Empirical Content.Michael E. Miller - unknown - British Journal for the Philosophy of Science 74 (2):511-532.
    Approaches to the interpretation of physical theories provide accounts of how physical meaning accrues to the mathematical structure of a theory. According to many standard approaches to interpretation, meaning relations are captured by maps from the mathematical structure of the theory to statements expressing its empirical content. In this article I argue that while such accounts adequately address meaning relations when exact models are available or perturbation theory converges, they do not fare as well for models that give rise to (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Humean scientific explanation.Elizabeth Miller - 2015 - Philosophical Studies 172 (5):1311-1332.
    In a recent paper, Barry Loewer attempts to defend Humeanism about laws of nature from a charge that Humean laws are not adequately explanatory. Central to his defense is a distinction between metaphysical and scientific explanations: even if Humeans cannot offer further metaphysical explanations of particular features of their “mosaic,” that does not preclude them from offering scientific explanations of these features. According to Marc Lange, however, Loewer’s distinction is of no avail. Defending a transitivity principle linking scientific explanantia to (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Leibniz and the Foundations of Physics: The Later Years.Jeffrey K. McDonough - 2016 - Philosophical Review 125 (1):1-34.
    This essay offers an account of the relationship between extended Leibnizian bodies and unextended Leibnizian monads, an account that shows why Leibniz was right to see intimate, explanatory connections between his studies in physics and his mature metaphysics. The first section sets the stage by introducing a case study from Leibniz's technical work on the strength of extended, rigid beams. The second section draws on that case study to introduce a model for understanding Leibniz's views on the relationship between derivative (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Using conceptual spaces to exhibit conceptual continuity through scientific theory change.George Masterton, Frank Zenker & Peter Gärdenfors - 2016 - European Journal for Philosophy of Science 7 (1):127-150.
    There is a great deal of justified concern about continuity through scientific theory change. Our thesis is that, particularly in physics, such continuity can be appropriately captured at the level of conceptual frameworks using conceptual space models. Indeed, we contend that the conceptual spaces of three of our most important physical theories—Classical Mechanics, Special Relativity Theory, and Quantum Mechanics —have already been so modelled as phase-spaces. Working with their phase-space formulations, one can trace the conceptual changes and continuities in transitioning (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The explanatory and heuristic power of mathematics.Marianna Antonutti Marfori, Sorin Bangu & Emiliano Ippoliti - 2023 - Synthese 201 (5):1-12.
    Download  
     
    Export citation  
     
    Bookmark  
  • How Not to Enhance the Indispensability Argument.Russell Marcus - 2014 - Philosophia Mathematica 22 (3):345-360.
    The new explanatory or enhanced indispensability argument alleges that our mathematical beliefs are justified by their indispensable appearances in scientific explanations. This argument differs from the standard indispensability argument which focuses on the uses of mathematics in scientific theories. I argue that the new argument depends for its plausibility on an equivocation between two senses of explanation. On one sense the new argument is an oblique restatement of the standard argument. On the other sense, it is vulnerable to an instrumentalist (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How Much Philosophy in the Philosophy of Chemistry?Alexandru Manafu - 2014 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 45 (1):33-44.
    This paper aims to show that there is a lot of philosophy in the philosophy of chemistry—not only in the problems and questions specific to chemistry, which this science brings up in philosophical discussions, but also in the topics of wider interest like reductionism and emergence, for which chemistry proves to be an ideal case study. The fact that chemical entities and properties are amenable to a quantitative understanding, to measurement and experiment to a greater extent than those in psychology (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Generalizing empirical adequacy I: multiplicity and approximation.Sebastian Lutz - 2014 - Synthese 191 (14):3195-3225.
    I provide an explicit formulation of empirical adequacy, the central concept of constructive empiricism, and point out a number of problems. Based on one of the inspirations for empirical adequacy, I generalize the notion of a theory to avoid implausible presumptions about the relation of theoretical concepts and observations, and generalize empirical adequacy with the help of approximation sets to allow for lack of knowledge, approximations, and successive gain of knowledge and precision. As a test case, I provide an application (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The ontological autonomy of the chemical world.Olimpia Lombardi & Martín Labarca - 2004 - Foundations of Chemistry 7 (2):125-148.
    In the problem of the relationship between chemistry and physics, many authors take for granted the ontological reduction of the chemical world to the world of physics. The autonomy of chemistry is usually defended on the basis of the failure of epistemological reduction: not all chemical concepts and laws can be derived from the theoretical framework of physics. The main aim of this paper is to argue that this line of argumentation is not strong enough for eliminate the idea of (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Explaining quantum spontaneous symmetry breaking.Chuang Liu & Gérard G. Emch - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):137-163.
    Two alternative accounts of quantum spontaneous symmetry breaking (SSB) are compared and one of them, the decompositional account in the algebraic approach, is argued to be superior for understanding quantum SSB. Two exactly solvable models are given as applications of our account -- the Weiss-Heisenberg model for ferromagnetism and the BCS model for superconductivity. Finally, the decompositional account is shown to be more conducive to the causal explanation of quantum SSB.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Inference to the Best explanation.Peter Lipton - 2004 - In Martin Curd & Stathis Psillos (eds.), The Routledge Companion to Philosophy of Science. Routledge. pp. 193.
    Science depends on judgments of the bearing of evidence on theory. Scientists must judge whether an observation or the result of an experiment supports, disconfirms, or is simply irrelevant to a given hypothesis. Similarly, scientists may judge that, given all the available evidence, a hypothesis ought to be accepted as correct or nearly so, rejected as false, or neither. Occasionally, these evidential judgments can be made on deductive grounds. If an experimental result strictly contradicts a hypothesis, then the truth of (...)
    Download  
     
    Export citation  
     
    Bookmark   298 citations  
  • Scientific understanding and felicitous legitimate falsehoods.Insa Lawler - 2021 - Synthese 198 (7):6859-6887.
    Science is replete with falsehoods that epistemically facilitate understanding by virtue of being the very falsehoods they are. In view of this puzzling fact, some have relaxed the truth requirement on understanding. I offer a factive view of understanding that fully accommodates the puzzling fact in four steps: (i) I argue that the question how these falsehoods are related to the phenomenon to be understood and the question how they figure into the content of understanding it are independent. (ii) I (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Model Explanation Versus Model-Induced Explanation.Insa Lawler & Emily Sullivan - 2021 - Foundations of Science 26 (4):1049-1074.
    Scientists appeal to models when explaining phenomena. Such explanations are often dubbed model explanations or model-based explanations. But what are the precise conditions for ME? Are ME special explanations? In our paper, we first rebut two definitions of ME and specify a more promising one. Based on this analysis, we single out a related conception that is concerned with explanations that are induced from working with a model. We call them ‘model-induced explanations’. Second, we study three paradigmatic cases of alleged (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dimensional explanations.Marc Lange - 2009 - Noûs 43 (4):742-775.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Climate modelling and structural stability.Vincent Lam - 2021 - European Journal for Philosophy of Science 11 (4):1-14.
    Climate modelling plays a crucial role for understanding and addressing the climate challenge, in terms of both mitigation and adaptation. It is therefore of central importance to understand to what extent climate models are adequate for relevant purposes, such as providing certain kinds of climate change projections in view of decision-making. In this perspective, the issue of the stability of climate models under small relevant perturbations in their structure seems particularly important. Within this framework, a debate has emerged in the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Kohärenter explanatorischer Pluralismus.Stephan Hartmann - 2002 - In Wolfram Hogrebe (ed.), Grenzen und Grenzüberschreitungen: XIX. Deutscher Kongress für Philosophie, Bonn, 23.-27. September 2002 : Vorträge und Kolloquien. Sinclair Press. pp. 141-150.
    Die Frage, was eine wissenschaftliche Erklärung ist, stellt seit mehr als einem halben Jahrhundert ein zentrales Thema der Wissenschaftsphilosophie dar. Die heutige Diskussion begann mit einer richtungsweisenden Arbeit von Carl Hempel im Jahre 1942 über den Erklärungsbegriff in der Geschichtswissenschaft. In dieser Arbeit gab Hempel, frühere Überlegungen von John Stuart Mill, Karl Popper und anderen präzisierend, eine formale Definition der Erklärung eines singulären Faktums.1 Mit seiner dem zugrunde liegenden Auffassung, dass die Wissenschaften sehr wohl in der Lage sind, Erklärungen zu (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The topological realization.Daniel Kostić - 2018 - Synthese (1).
    In this paper, I argue that the newly developed network approach in neuroscience and biology provides a basis for formulating a unique type of realization, which I call topological realization. Some of its features and its relation to one of the dominant paradigms of realization and explanation in sciences, i.e. the mechanistic one, are already being discussed in the literature. But the detailed features of topological realization, its explanatory power and its relation to another prominent view of realization, namely the (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations