Switch to: References

Add citations

You must login to add citations.
  1. Black Hole Paradoxes: A Unified Framework for Information Loss.Saakshi Dulani - 2024 - Dissertation, University of Geneva
    The black hole information loss paradox is a catch-all term for a family of puzzles related to black hole evaporation. For almost 50 years, the quest to elucidate the implications of black hole evaporation has not only sustained momentum, but has also become increasingly populated with proposals that seem to generate more questions than they purport to answer. Scholars often neglect to acknowledge ongoing discussions within black hole thermodynamics and statistical mechanics when analyzing the paradox, including the interpretation of Bekenstein-Hawking (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Finite-size scaling theory: Quantitative and qualitative approaches to critical phenomena.Vincent Ardourel & Sorin Bangu - 2023 - Studies in History and Philosophy of Science Part A 100 (C):99-106.
    Download  
     
    Export citation  
     
    Bookmark  
  • Modeling multiscale patterns: active matter, minimal models, and explanatory autonomy.Collin Rice - 2022 - Synthese 200 (6):1-35.
    Both ecologists and statistical physicists use a variety of highly idealized models to study active matter and self-organizing critical phenomena. In this paper, I show how universality classes play a crucial role in justifying the application of highly idealized ‘minimal’ models to explain and understand the critical behaviors of active matter systems across a wide range of scales and scientific fields. Appealing to universality enables us to see why the same minimal models can be used to explain and understand behaviors (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Explaining Universality: Infinite Limit Systems in the Renormalization Group Method.Jingyi Wu - 2021 - Synthese (5-6):14897-14930.
    I analyze the role of infinite idealizations used in the renormalization group (RG hereafter) method in explaining universality across microscopically different physical systems in critical phenomena. I argue that despite the reference to infinite limit systems such as systems with infinite correlation lengths during the RG process, the key to explaining universality in critical phenomena need not involve infinite limit systems. I develop my argument by introducing what I regard as the explanatorily relevant property in RG explanations: linearization* property; I (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Idealizations and Analogies: Explaining Critical Phenomena.Quentin Rodriguez - 2021 - Studies in History and Philosophy of Science Part A 89 (C):235-247.
    The “universality” of critical phenomena is much discussed in philosophy of scientific explanation, idealizations and philosophy of physics. Lange and Reutlinger recently opposed Batterman concerning the role of some deliberate distortions in unifying a large class of phenomena, regardless of microscopic constitution. They argue for an essential explanatory role for “commonalities” rather than that of idealizations. Building on Batterman's insight, this article aims to show that assessing the differences between the universality of critical phenomena and two paradigmatic cases of “commonality (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical Representation and Explanation: structuralism, the similarity account, and the hotchpotch picture.Ziren Yang - 2020 - Dissertation, University of Leeds
    This thesis starts with three challenges to the structuralist accounts of applied mathematics. Structuralism views applied mathematics as a matter of building mapping functions between mathematical and target-ended structures. The first challenge concerns how it is possible for a non-mathematical target to be represented mathematically when the mapping functions per se are mathematical objects. The second challenge arises out of inconsistent early calculus, which suggests that mathematical representation does not require rigorous mathematical structures. The third challenge comes from renormalisation group (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Counterfactuals and Explanatory Pluralism.Kareem Khalifa, Gabriel Doble & Jared Millson - 2018 - British Journal for the Philosophy of Science 71 (4):1439-1460.
    Recent literature on non-causal explanation raises the question as to whether explanatory monism, the thesis that all explanations submit to the same analysis, is true. The leading monist proposal holds that all explanations support change-relating counterfactuals. We provide several objections to this monist position. 1Introduction2Change-Relating Monism's Three Problems3Dependency and Monism: Unhappy Together4Another Challenge: Counterfactual Incidentalism4.1High-grade necessity4.2Unity in diversity5Conclusion.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Emergence in Ontic Structural Realism.Petr Dvořák - 2023 - Pro-Fil 24 (2):1-17.
    The paper outlines the understanding of emergence in Ontic Structural Realism of James Ladyman (and his co-author Ross). First, the notion of emergence is explored, surveying the various distinctions associated with it (ontological vs. epistemological, diachronic vs. synchronic, weak vs. strong). It turns out that Ross and Ladyman’s notion of emergence is that of weak epistemological emergence compatible with ontic reduction. Particular notions of emergence are associated with the objection embodied in the Generalized Causal Exclusion Argument. The latter is sketched (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Renormalization group methods and the epistemology of effective field theories.Adam Koberinski & Doreen Fraser - 2023 - Studies in History and Philosophy of Science Part A 98 (C):14-28.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Renormalization group methods: Which kind of explanation?Elena Castellani & Emilia Margoni - 2022 - Studies in History and Philosophy of Science Part A 95 (C):158-166.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Descriptive multiscale modeling in data-driven neuroscience.Philipp Haueis - 2022 - Synthese 200 (2):1-26.
    Multiscale modeling techniques have attracted increasing attention by philosophers of science, but the resulting discussions have almost exclusively focused on issues surrounding explanation (e.g., reduction and emergence). In this paper, I argue that besides explanation, multiscale techniques can serve important exploratory functions when scientists model systems whose organization at different scales is ill-understood. My account distinguishes explanatory and descriptive multiscale modeling based on which epistemic goal scientists aim to achieve when using multiscale techniques. In explanatory multiscale modeling, scientists use multiscale (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cognitive dynamical models as minimal models.Travis Holmes - 2021 - Synthese 199 (1):2353-2373.
    The debate over the explanatory nature of cognitive models has been waged mostly between two factions: the mechanists and the dynamical systems theorists. The former hold that cognitive models are explanatory only if they satisfy a set of mapping criteria, particularly the 3M/3m* requirement. The latter have argued, pace the mechanists, that some cognitive models are both dynamical and constitute covering-law explanations. In this paper, I provide a minimal model interpretation of dynamical cognitive models, arguing that this both provides needed (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Book Forum.Robert W. Batterman - forthcoming - Studies in History and Philosophy of Science Part A.
    Download  
     
    Export citation  
     
    Bookmark  
  • Becoming Large, Becoming Infinite: The Anatomy of Thermal Physics and Phase Transitions in Finite Systems.David A. Lavis, Reimer Kühn & Roman Frigg - 2021 - Foundations of Physics 51 (5):1-69.
    This paper presents an in-depth analysis of the anatomy of both thermodynamics and statistical mechanics, together with the relationships between their constituent parts. Based on this analysis, using the renormalization group and finite-size scaling, we give a definition of a large but finite system and argue that phase transitions are represented correctly, as incipient singularities in such systems. We describe the role of the thermodynamic limit. And we explore the implications of this picture of critical phenomena for the questions of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations