Switch to: References

Add citations

You must login to add citations.
  1. A new minimal non-σ-scattered linear order.Hossein Lamei Ramandi - 2019 - Journal of Symbolic Logic 84 (4):1576-1589.
    We will show it is consistent with GCH that there is a minimal non-σ-scattered linear order which does not contain any real or Aronszajn type. In particular the assumption PFA+ in the main result of [5] is necessary, and there are other obstructions than real and Aronszajn types to the sharpness of Laver’s theorem in [8].
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • Heights of Models of ZFC and the Existence of End Elementary Extensions II.Andrés Villaveces - 1999 - Journal of Symbolic Logic 64 (3):1111-1124.
    The existence of End Elementary Extensions of models M of ZFC is related to the ordinal height of M, according to classical results due to Keisler, Morley and Silver. In this paper, we further investigate the connection between the height of M and the existence of End Elementary Extensions of M. In particular, we prove that the theory `ZFC + GCH + there exist measurable cardinals + all inaccessible non weakly compact cardinals are possible heights of models with no End (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The descriptive set-theoretical complexity of the embeddability relation on models of large size.Luca Motto Ros - 2013 - Annals of Pure and Applied Logic 164 (12):1454-1492.
    We show that if κ is a weakly compact cardinal then the embeddability relation on trees of size κ is invariantly universal. This means that for every analytic quasi-order R on the generalized Cantor space View the MathML source there is an Lκ+κ-sentence φ such that the embeddability relation on its models of size κ, which are all trees, is Borel bi-reducible to R. In particular, this implies that the relation of embeddability on trees of size κ is complete for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Notes on Singular Cardinal Combinatorics.James Cummings - 2005 - Notre Dame Journal of Formal Logic 46 (3):251-282.
    We present a survey of combinatorial set theory relevant to the study of singular cardinals and their successors. The topics covered include diamonds, squares, club guessing, forcing axioms, and PCF theory.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The descriptive set-theoretical complexity of the embeddability relation on models of large size.Luca Ros - 2013 - Annals of Pure and Applied Logic 164 (12):1454-1492.
    We show that if κ is a weakly compact cardinal then the embeddability relation on trees of size κ is invariantly universal. This means that for every analytic quasi-order R on the generalized Cantor space View the MathML source there is an Lκ+κ-sentence φ such that the embeddability relation on its models of size κ, which are all trees, is Borel bi-reducible to R. In particular, this implies that the relation of embeddability on trees of size κ is complete for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Bounded dagger principles.Toshimichi Usuba - 2014 - Mathematical Logic Quarterly 60 (4-5):266-272.
    For an uncountable cardinal κ, let be the assertion that every ω1‐stationary preserving poset of size is semiproper. We prove that is a strong principle which implies a strong form of Chang's conjecture. We also show that implies that is presaturated.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Chain conditions of products, and weakly compact cardinals.Assaf Rinot - 2014 - Bulletin of Symbolic Logic 20 (3):293-314,.
    The history of productivity of the κ-chain condition in partial orders, topological spaces, or Boolean algebras is surveyed, and its connection to the set-theoretic notion of a weakly compact cardinal is highlighted. Then, it is proved that for every regular cardinal κ > א1, the principle □ is equivalent to the existence of a certain strong coloring c : [κ]2 → κ for which the family of fibers T is a nonspecial κ-Aronszajn tree. The theorem follows from an analysis of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Covering theorems for the core model, and an application to stationary set reflection.Sean Cox - 2010 - Annals of Pure and Applied Logic 161 (1):66-93.
    We prove covering theorems for K, where K is the core model below the sharp for a strong cardinal, and give an application to stationary set reflection.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Two Upper Bounds on Consistency Strength of $negsquare{aleph{omega}}$ and Stationary Set Reflection at Two Successive $aleph_{n}$.Martin Zeman - 2017 - Notre Dame Journal of Formal Logic 58 (3):409-432.
    We give modest upper bounds for consistency strengths for two well-studied combinatorial principles. These bounds range at the level of subcompact cardinals, which is significantly below a κ+-supercompact cardinal. All previously known upper bounds on these principles ranged at the level of some degree of supercompactness. We show that by using any of the standard modified Prikry forcings it is possible to turn a measurable subcompact cardinal into ℵω and make the principle □ℵω,<ω fail in the generic extension. We also (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Stationary Cardinals.Wenzhi Sun - 1993 - Archive for Mathematical Logic 32 (6):429-442.
    This paper will define a new cardinal called aStationary Cardinal. We will show that every weakly∏ 1 1 -indescribable cardinal is a stationary cardinal, every stationary cardinal is a greatly Mahlo cardinal and every stationary set of a stationary cardinal reflects. On the other hand, the existence of such a cardinal is independent of that of a∏ 1 1 -indescribable cardinal and the existence of a cardinal such that every stationary set reflects is also independent of that of a stationary (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Simplified morasses with linear limits.Dan Velleman - 1984 - Journal of Symbolic Logic 49 (4):1001-1021.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Jensen's □ principles and the Novak number of partially ordered sets.Boban Veličković - 1986 - Journal of Symbolic Logic 51 (1):47-58.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Trees, subtrees and order types.Stevo B. Todorčević - 1981 - Annals of Mathematical Logic 20 (3):233.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A cofinality-preserving small forcing may introduce a special Aronszajn tree.Assaf Rinot - 2009 - Archive for Mathematical Logic 48 (8):817-823.
    It is relatively consistent with the existence of two supercompact cardinals that a special Aronszajn tree of height ${\aleph_{\omega_1+1}}$ is introduced by a cofinality-preserving forcing of size ${\aleph_3}$.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • EM constructions for a class of generalized quantifiers.Martin Otto - 1992 - Archive for Mathematical Logic 31 (5):355-371.
    We consider a class of Lindström extensions of first-order logic which are susceptible to a natural Skolemization procedure. In these logics Ehrenfeucht Mostowski (EM) functors for theories with arbitrarily large models can be obtained under suitable restrictions. Characteristic dependencies between algebraic properties of the quantifiers and the maximal domains of EM functors are investigated.Results are applied to Magidor Malitz logic,L(Q <ω), showing e.g. its Hanf number to be equal to ℶω(ℵ1) in the countably compact case. Using results of Baumgartner, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reflecting stationary sets.Menachem Magidor - 1982 - Journal of Symbolic Logic 47 (4):755-771.
    We prove that the statement "For every pair A, B, stationary subsets of ω 2 , composed of points of cofinality ω, there exists an ordinal α such that both A ∩ α and $B \bigcap \alpha$ are stationary subsets of α" is equiconsistent with the existence of weakly compact cardinal. (This completes results of Baumgartner and Harrington and Shelah.) We also prove, assuming the existence of infinitely many supercompact cardinals, the statement "Every stationary subset of ω ω + 1 (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • In memoriam: James Earl Baumgartner (1943–2011).J. A. Larson - 2017 - Archive for Mathematical Logic 56 (7):877-909.
    James Earl Baumgartner (March 23, 1943–December 28, 2011) came of age mathematically during the emergence of forcing as a fundamental technique of set theory, and his seminal research changed the way set theory is done. He made fundamental contributions to the development of forcing, to our understanding of uncountable orders, to the partition calculus, and to large cardinals and their ideals. He promulgated the use of logic such as absoluteness and elementary submodels to solve problems in set theory, he applied (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Squares and covering matrices.Chris Lambie-Hanson - 2014 - Annals of Pure and Applied Logic 165 (2):673-694.
    Viale introduced covering matrices in his proof that SCH follows from PFA. In the course of the proof and subsequent work with Sharon, he isolated two reflection principles, CP and S, which, under certain circumstances, are satisfied by all covering matrices of a certain shape. Using square sequences, we construct covering matrices for which CP and S fail. This leads naturally to an investigation of square principles intermediate between □κ and □ for a regular cardinal κ. We provide a detailed (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Equimorphy: the case of chains.C. Laflamme, M. Pouzet & R. Woodrow - 2017 - Archive for Mathematical Logic 56 (7-8):811-829.
    Two structures are said to be equimorphic if each embeds in the other. Such structures cannot be expected to be isomorphic, and in this paper we investigate the special case of linear orders, here also called chains. In particular we provide structure results for chains having less than continuum many isomorphism classes of equimorphic chains. We deduce as a corollary that any chain has either a single isomorphism class of equimorphic chains or infinitely many.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Stationary reflection for uncountable cofinality.Péter Komjáth - 1986 - Journal of Symbolic Logic 51 (1):147-151.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Morasses and the lévy-collapse.P. Komjáth - 1987 - Journal of Symbolic Logic 52 (1):111-115.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Local coherence.Bernhard König - 2003 - Annals of Pure and Applied Logic 124 (1-3):107-139.
    We characterize the tree of functions with finite support in terms of definability. This turns out to have various applications: a new kind of tree dichotomy for ω1 on the one hand. On the other hand, we prove a reflection principle for trees on ω2 under SPFA. This reflection of trees implies stationary reflection.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Stationary reflection.Yair Hayut & Spencer Unger - 2020 - Journal of Symbolic Logic 85 (3):937-959.
    We improve the upper bound for the consistency strength of stationary reflection at successors of singular cardinals.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The monadic theory of ω2.Yuri Gurevich, Menachem Magidor & Saharon Shelah - 1983 - Journal of Symbolic Logic 48 (2):387-398.
    Assume ZFC + "There is a weakly compact cardinal" is consistent. Then: (i) For every $S \subseteq \omega, \mathrm{ZFC} +$ "S and the monadic theory of ω 2 are recursive each in the other" is consistent; and (ii) ZFC + "The full second-order theory of ω 2 is interpretable in the monadic theory of ω 2 " is consistent.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Two weak consequences of 0#. [REVIEW]M. Gitik, M. Magidor & H. Woodin - 1985 - Journal of Symbolic Logic 50 (3):597 - 603.
    It is proven that the following statement: "there exists a club $C \subseteq \kappa$ such that every α ∈ C is an inaccessible cardinal in L and, for every δ a limit point of C, C ∩ δ is almost contained in every club of δ of L" is equiconsistent with a weakly compact cardinal if κ = ℵ 1 , and with a weakly compact cardinal of order 1 if κ = ℵ 2.
    Download  
     
    Export citation  
     
    Bookmark  
  • Club-guessing, stationary reflection, and coloring theorems.Todd Eisworth - 2010 - Annals of Pure and Applied Logic 161 (10):1216-1243.
    We obtain very strong coloring theorems at successors of singular cardinals from failures of certain instances of simultaneous reflection of stationary sets. In particular, the simplest of our results establishes that if μ is singular and , then there is a regular cardinal θ<μ such that any fewer than cf stationary subsets of must reflect simultaneously.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Saturated filters at successors of singulars, weak reflection and yet another weak club principle.Mirna Džamonja & Saharon Shelah - 1996 - Annals of Pure and Applied Logic 79 (3):289-316.
    Suppose that λ is the successor of a singular cardinal μ whose cofinality is an uncountable cardinal κ. We give a sufficient condition that the club filter of λ concentrating on the points of cofinality κ is not λ+-saturated.1 The condition is phrased in terms of a notion that we call weak reflection. We discuss various properties of weak reflection. We introduce a weak version of the ♣-principle, which we call ♣*−, and show that if it holds on a stationary (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Eightfold Way.James Cummings, Sy-David Friedman, Menachem Magidor, Assaf Rinot & Dima Sinapova - 2018 - Journal of Symbolic Logic 83 (1):349-371.
    Three central combinatorial properties in set theory are the tree property, the approachability property and stationary reflection. We prove the mutual independence of these properties by showing that any of their eight Boolean combinations can be forced to hold at${\kappa ^{ + + }}$, assuming that$\kappa = {\kappa ^{ < \kappa }}$and there is a weakly compact cardinal aboveκ.If in additionκis supercompact then we can forceκto be${\aleph _\omega }$in the extension. The proofs combine the techniques of adding and then destroying (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations