Switch to: References

Add citations

You must login to add citations.
  1. After the Philosophy of Mind: Replacing Scholasticism with Science.Tony Chemero & Michael Silberstein - 2008 - Philosophy of Science 75 (1):1-27.
    We provide a taxonomy of the two most important debates in the philosophy of the cognitive and neural sciences. The first debate is over methodological individualism: is the object of the cognitive and neural sciences the brain, the whole animal, or the animal--environment system? The second is over explanatory style: should explanation in cognitive and neural science be reductionist-mechanistic, inter-level mechanistic, or dynamical? After setting out the debates, we discuss the ways in which they are interconnected. Finally, we make some (...)
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • The massive redeployment hypothesis and the functional topography of the brain.Michael L. Anderson - 2008 - Philosophical Psychology 21 (2):143-174.
    This essay introduces the massive redeployment hypothesis, an account of the functional organization of the brain that centrally features the fact that brain areas are typically employed to support numerous functions. The central contribution of the essay is to outline a middle course between strict localization on the one hand, and holism on the other, in such a way as to account for the supporting data on both sides of the argument. The massive redeployment hypothesis is supported by case studies (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Computing Mechanisms and Autopoietic Systems.Joe Dewhurst - 2016 - In Vincent C. Müller (ed.), Computing and philosophy: Selected papers from IACAP 2014. Cham: Springer. pp. 17-26.
    This chapter draws an analogy between computing mechanisms and autopoietic systems, focusing on the non-representational status of both kinds of system (computational and autopoietic). It will be argued that the role played by input and output components in a computing mechanism closely resembles the relationship between an autopoietic system and its environment, and in this sense differs from the classical understanding of inputs and outputs. The analogy helps to make sense of why we should think of computing mechanisms as non-representational, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Individuation without Representation.Joe Dewhurst - 2018 - British Journal for the Philosophy of Science 69 (1):103-116.
    ABSTRACT Shagrir and Sprevak explore the apparent necessity of representation for the individuation of digits in computational systems.1 1 I will first offer a response to Sprevak’s argument that does not mention Shagrir’s original formulation, which was more complex. I then extend my initial response to cover Shagrir’s argument, thus demonstrating that it is possible to individuate digits in non-representational computing mechanisms. I also consider the implications that the non-representational individuation of digits would have for the broader theory of computing (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations