Switch to: References

Add citations

You must login to add citations.
  1. Evitable iterates of the consistency operator.James Walsh - 2023 - Computability 12 (1):59--69.
    Why are natural theories pre-well-ordered by consistency strength? In previous work, an approach to this question was proposed. This approach was inspired by Martin's Conjecture, one of the most prominent conjectures in recursion theory. Fixing a reasonable subsystem $T$ of arithmetic, the goal was to classify the recursive functions that are monotone with respect to the Lindenbaum algebra of $T$. According to an optimistic conjecture, roughly, every such function must be equivalent to an iterate $\mathsf{Con}_T^\alpha$ of the consistency operator ``in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reflection ranks and ordinal analysis.Fedor Pakhomov & James Walsh - 2021 - Journal of Symbolic Logic 86 (4):1350-1384.
    It is well-known that natural axiomatic theories are well-ordered by consistency strength. However, it is possible to construct descending chains of artificial theories with respect to consistency strength. We provide an explanation of this well-orderedness phenomenon by studying a coarsening of the consistency strength order, namely, the$\Pi ^1_1$reflection strength order. We prove that there are no descending sequences of$\Pi ^1_1$sound extensions of$\mathsf {ACA}_0$in this ordering. Accordingly, we can attach a rank in this order, which we call reflection rank, to any$\Pi (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The omega-rule interpretation of transfinite provability logic.David Fernández-Duque & Joost J. Joosten - 2018 - Annals of Pure and Applied Logic 169 (4):333-371.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Turing–Taylor Expansions for Arithmetic Theories.Joost J. Joosten - 2016 - Studia Logica 104 (6):1225-1243.
    Turing progressions have been often used to measure the proof-theoretic strength of mathematical theories: iterate adding consistency of some weak base theory until you “hit” the target theory. Turing progressions based on n-consistency give rise to a \ proof-theoretic ordinal \ also denoted \. As such, to each theory U we can assign the sequence of corresponding \ ordinals \. We call this sequence a Turing-Taylor expansion or spectrum of a theory. In this paper, we relate Turing-Taylor expansions of sub-theories (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Slow reflection.Anton Freund - 2017 - Annals of Pure and Applied Logic 168 (12):2103-2128.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Transfinite Progressions: A Second Look At Completeness.Torkel Franzén - 2004 - Bulletin of Symbolic Logic 10 (3):367-389.
    §1. Iterated Gödelian extensions of theories. The idea of iterating ad infinitum the operation of extending a theory T by adding as a new axiom a Gödel sentence for T, or equivalently a formalization of “T is consistent”, thus obtaining an infinite sequence of theories, arose naturally when Godel's incompleteness theorem first appeared, and occurs today to many non-specialists when they ponder the theorem. In the logical literature this idea has been thoroughly explored through two main approaches. One is that (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Principles for Object-Linguistic Consequence: from Logical to Irreflexive.Carlo Nicolai & Lorenzo Rossi - 2018 - Journal of Philosophical Logic 47 (3):549-577.
    We discuss the principles for a primitive, object-linguistic notion of consequence proposed by ) that yield a version of Curry’s paradox. We propose and study several strategies to weaken these principles and overcome paradox: all these strategies are based on the intuition that the object-linguistic consequence predicate internalizes whichever meta-linguistic notion of consequence we accept in the first place. To these solutions will correspond different conceptions of consequence. In one possible reading of these principles, they give rise to a notion (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Classes and truths in set theory.Kentaro Fujimoto - 2012 - Annals of Pure and Applied Logic 163 (11):1484-1523.
    This article studies three most basic systems of truth as well as their subsystems over set theory ZF possibly with AC or the axiom of global choice GC, and then correlates them with subsystems of Morse–Kelley class theory MK. The article aims at making an initial step towards the axiomatic study of truth in set theory in connection with class theory. Some new results on the side of class theory, such as conservativity, forcing and some forms of the reflection principle, (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Human-Effective Computability†.Marianna Antonutti Marfori & Leon Horsten - 2018 - Philosophia Mathematica 27 (1):61-87.
    We analyse Kreisel’s notion of human-effective computability. Like Kreisel, we relate this notion to a concept of informal provability, but we disagree with Kreisel about the precise way in which this is best done. The resulting two different ways of analysing human-effective computability give rise to two different variants of Church’s thesis. These are both investigated by relating them to transfinite progressions of formal theories in the sense of Feferman.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the limit existence principles in elementary arithmetic and Σ n 0 -consequences of theories.Lev D. Beklemishev & Albert Visser - 2005 - Annals of Pure and Applied Logic 136 (1-2):56-74.
    We study the arithmetical schema asserting that every eventually decreasing elementary recursive function has a limit. Some other related principles are also formulated. We establish their relationship with restricted parameter-free induction schemata. We also prove that the same principle, formulated as an inference rule, provides an axiomatization of the Σ2-consequences of IΣ1.Using these results we show that ILM is the logic of Π1-conservativity of any reasonable extension of parameter-free Π1-induction schema. This result, however, cannot be much improved: by adapting a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Logic of Turing Progressions.Eduardo Hermo Reyes & Joost J. Joosten - 2020 - Notre Dame Journal of Formal Logic 61 (1):155-180.
    Turing progressions arise by iteratedly adding consistency statements to a base theory. Different notions of consistency give rise to different Turing progressions. In this paper we present a logic that generates exactly all relations that hold between these different Turing progressions given a particular set of natural consistency notions. Thus, the presented logic is proven to be arithmetically sound and complete for a natural interpretation, named the formalized Turing progressions interpretation.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the inevitability of the consistency operator.Antonio Montalbán & James Walsh - 2019 - Journal of Symbolic Logic 84 (1):205-225.
    We examine recursive monotonic functions on the Lindenbaum algebra of EA. We prove that no such function sends every consistent φ to a sentence with deductive strength strictly between φ and (φ∧Con(φ)). We generalize this result to iterates of consistency into the effective transfinite. We then prove that for any recursive monotonic function f, if there is an iterate of Con that bounds f everywhere, then f must be somewhere equal to an iterate of Con.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Notes on local reflection principles.Lev Beklemishev - 1997 - Theoria 63 (3):139-146.
    Download  
     
    Export citation  
     
    Bookmark   6 citations