Switch to: References

Add citations

You must login to add citations.
  1. Epistemic optimism.Mihai Ganea - 2008 - Philosophia Mathematica 16 (3):333-353.
    Michael Dummett's argument for intuitionism can be criticized for the implicit reliance on the existence of what might be called absolutely undecidable statements. Neil Tennant attacks epistemic optimism, the view that there are no such statements. I expose what seem serious flaws in his attack, and I suggest a way of defending the use of classical logic in arithmetic that circumvents the issue of optimism. I would like to thank an anonymous referee for helpful comments. CiteULike Connotea Del.icio.us What's this?
    Download  
     
    Export citation  
     
    Bookmark  
  • Infinite inference and mathematical conventionalism.Douglas Blue - forthcoming - Philosophy and Phenomenological Research.
    We argue that (1) a purported example of an infinite inference we humans can actually perform admits a faithful, finitary description, and (2) infinite inference contravenes any view which does not grant our minds uncomputable powers. These arguments block the strategy, dating back to Carnap's Logical Syntax of Language, of using infinitary inference rules to secure the determinacy of arithmetical truth on conventionalist grounds.
    Download  
     
    Export citation  
     
    Bookmark  
  • Categorical Quantification.Constantin C. Brîncuş - 2024 - Bulletin of Symbolic Logic 30 (2):pp. 227-252.
    Due to Gӧdel’s incompleteness results, the categoricity of a sufficiently rich mathematical theory and the semantic completeness of its underlying logic are two mutually exclusive ideals. For first- and second-order logics we obtain one of them with the cost of losing the other. In addition, in both these logics the rules of deduction for their quantifiers are non-categorical. In this paper I examine two recent arguments –Warren (2020), Murzi and Topey (2021)– for the idea that the natural deduction rules for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Naïve validity.Julien Murzi & Lorenzo Rossi - 2017 - Synthese 199 (Suppl 3):819-841.
    Beall and Murzi :143–165, 2013) introduce an object-linguistic predicate for naïve validity, governed by intuitive principles that are inconsistent with the classical structural rules. As a consequence, they suggest that revisionary approaches to semantic paradox must be substructural. In response to Beall and Murzi, Field :1–19, 2017) has argued that naïve validity principles do not admit of a coherent reading and that, for this reason, a non-classical solution to the semantic paradoxes need not be substructural. The aim of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the Anti-Mechanist Arguments Based on Gödel’s Theorem.Stanisław Krajewski - 2020 - Studia Semiotyczne 34 (1):9-56.
    The alleged proof of the non-mechanical, or non-computational, character of the human mind based on Gödel’s incompleteness theorem is revisited. Its history is reviewed. The proof, also known as the Lucas argument and the Penrose argument, is refuted. It is claimed, following Gödel himself and other leading logicians, that antimechanism is not implied by Gödel’s theorems alone. The present paper sets out this refutation in its strongest form, demonstrating general theorems implying the inconsistency of Lucas’s arithmetic and the semantic inadequacy (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Human-Effective Computability†.Marianna Antonutti Marfori & Leon Horsten - 2018 - Philosophia Mathematica 27 (1):61-87.
    We analyse Kreisel’s notion of human-effective computability. Like Kreisel, we relate this notion to a concept of informal provability, but we disagree with Kreisel about the precise way in which this is best done. The resulting two different ways of analysing human-effective computability give rise to two different variants of Church’s thesis. These are both investigated by relating them to transfinite progressions of formal theories in the sense of Feferman.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Scope of Gödel’s First Incompleteness Theorem.Bernd Buldt - 2014 - Logica Universalis 8 (3-4):499-552.
    Guided by questions of scope, this paper provides an overview of what is known about both the scope and, consequently, the limits of Gödel’s famous first incompleteness theorem.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Completeness of the primitive recursive $$omega $$ ω -rule.Emanuele Frittaion - 2020 - Archive for Mathematical Logic 59 (5-6):715-731.
    Shoenfield’s completeness theorem states that every true first order arithmetical sentence has a recursive \-proof encodable by using recursive applications of the \-rule. For a suitable encoding of Gentzen style \-proofs, we show that Shoenfield’s completeness theorem applies to cut free \-proofs encodable by using primitive recursive applications of the \-rule. We also show that the set of codes of \-proofs, whether it is based on recursive or primitive recursive applications of the \-rule, is \ complete. The same \ completeness (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Informal versus formal mathematics.Francisco Antonio Doria - 2007 - Synthese 154 (3):401-415.
    We discuss Kunen’s algorithmic implementation of a proof for the Paris–Harrington theorem, and the author’s and da Costa’s proposed “exotic” formulation for the P = NP hypothesis. Out of those two examples we ponder the relation between mathematics within an axiomatic framework, and intuitive or informal mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel’s Disjunctive Argument†.Wesley Wrigley - 2022 - Philosophia Mathematica 30 (3):306-342.
    Gödel argued that the incompleteness theorems entail that the mind is not a machine, or that certain arithmetical propositions are absolutely undecidable. His view was that the mind is not a machine, and that no arithmetical propositions are absolutely undecidable. I argue that his position presupposes that the idealized mathematician has an ability which I call the recursive-ordinal recognition ability. I show that we have this ability if, and only if, there are no absolutely undecidable arithmetical propositions. I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation