Switch to: References

Add citations

You must login to add citations.
  1. Undecidability in diagonalizable algebras.V. Shavrukov - 1997 - Journal of Symbolic Logic 62 (1):79-116.
    If a formal theory T is able to reason about its own syntax, then the diagonalizable algebra of T is defined as its Lindenbaum sentence algebra endowed with a unary operator □ which sends a sentence φ to the sentence □φ asserting the provability of φ in T. We prove that the first order theories of diagonalizable algebras of a wide class of theories are undecidable and establish some related results.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Solutions to the Knower Paradox in the Light of Haack’s Criteria.Mirjam de Vos, Rineke Verbrugge & Barteld Kooi - 2023 - Journal of Philosophical Logic 52 (4):1101-1132.
    The knower paradox states that the statement ‘We know that this statement is false’ leads to inconsistency. This article presents a fresh look at this paradox and some well-known solutions from the literature. Paul Égré discusses three possible solutions that modal provability logic provides for the paradox by surveying and comparing three different provability interpretations of modality, originally described by Skyrms, Anderson, and Solovay. In this article, some background is explained to clarify Égré’s solutions, all three of which hinge on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bimodal logics for extensions of arithmetical theories.Lev D. Beklemishev - 1996 - Journal of Symbolic Logic 61 (1):91-124.
    We characterize the bimodal provability logics for certain natural (classes of) pairs of recursively enumerable theories, mostly related to fragments of arithmetic. For example, we shall give axiomatizations, decision procedures, and introduce natural Kripke semantics for the provability logics of (IΔ 0 + EXP, PRA); (PRA, IΣ 1 ); (IΣ m , IΣ n ) for $1 \leq m etc. For the case of finitely axiomatized extensions of theories these results are extended to modal logics with propositional constants.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Provability logic-a short introduction.Per Lindström - 1996 - Theoria 62 (1-2):19-61.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)All finitely axiomatizable subframe logics containing the provability logic CSM $_{0}$ are decidable.Frank Wolter - 1998 - Archive for Mathematical Logic 37 (3):167-182.
    In this paper we investigate those extensions of the bimodal provability logic ${\vec CSM}_{0}$ (alias ${\vec PRL}_{1}$ or ${\vec F}^{-})$ which are subframe logics, i.e. whose general frames are closed under a certain type of substructures. Most bimodal provability logics are in this class. The main result states that all finitely axiomatizable subframe logics containing ${\vec CSM}_{0}$ are decidable. We note that, as a rule, interesting systems in this class do not have the finite model property and are not even (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert's programme and gödel's theorems.Karl-Georg Niebergall & Matthias Schirn - 2002 - Dialectica 56 (4):347–370.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Provability logic.Rineke Verbrugge - 2008 - Stanford Encyclopedia of Philosophy.
    -/- Provability logic is a modal logic that is used to investigate what arithmetical theories can express in a restricted language about their provability predicates. The logic has been inspired by developments in meta-mathematics such as Gödel’s incompleteness theorems of 1931 and Löb’s theorem of 1953. As a modal logic, provability logic has been studied since the early seventies, and has had important applications in the foundations of mathematics. -/- From a philosophical point of view, provability logic is interesting because (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Iterated local reflection versus iterated consistency.Lev Beklemishev - 1995 - Annals of Pure and Applied Logic 75 (1-2):25-48.
    For “natural enough” systems of ordinal notation we show that α times iterated local reflection schema over a sufficiently strong arithmetic T proves the same Π 1 0 -sentences as ω α times iterated consistency. A corollary is that the two hierarchies catch up modulo relative interpretability exactly at ε-numbers. We also derive the following more general “mixed” formulas estimating the consistency strength of iterated local reflection: for all ordinals α ⩾ 1 and all β, β ≡ Π 1 0 (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations