Citations of:
Add citations
You must login to add citations.


This paper reviews the structure of standard quantum mechanics, introducing the basics of the von NeumannDirac axiomatic formulation as well as the wellknown Copenhagen interpretation. We review also the major conceptual difficulties arising from this theory, first and foremost, the wellknown measurement problem. The main aim of this essay is to show the possibility to solve the conundrums affecting quantum mechanics via the methodology provided by the primitive ontology approach. Using Bohmian mechanics as an example, the paper argues for a (...) 

In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostatethe special lowentropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are two (...) 

If the Past Hypothesis underlies the arrows of time, what is the status of the Past Hypothesis? In this paper, I examine the role of the Past Hypothesis in the Boltzmannian account and defend the view that the Past Hypothesis is a candidate fundamental law of nature. Such a view is known to be compatible with Humeanism about laws, but as I argue it is also supported by a minimal nonHumean "governing'' view. Some worries arise from the nondynamical and timedependent (...) 

In a quantum universe with a strong arrow of time, we postulate a lowentropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast to Wave Function (...) 

In the recent literature, it has been shown that the wave function in the de Broglie–Bohm theory can be regarded as a new kind of field, i.e., a "multifield", in threedimensional space. In this paper, I argue that the natural framework for the multifield is the original secondorder Bohm’s theory. In this context, it is possible: i) to construe the multifield as a realvalued scalar field; ii) to explain the physical interaction between the multifield and the Bohmian particles; and iii) (...) 

The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various wellknown interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology (...) 

The article sets out a primitive ontology of the natural world in terms of primitive stuff—that is, stuff that has as such no physical properties at all—but that is not a bare substratum either, being individuated by metrical relations. We focus on quantum physics and employ identitybased Bohmian mechanics to illustrate this view, but point out that it applies all over physics. Properties then enter into the picture exclusively through the role that they play for the dynamics of the primitive (...) 



In this paper I review three different positions on the wave function, namely: nomological realism, dispositionalism, and configuration space realism by regarding as essential their capacity to account for the world of our experience. I conclude that the first two positions are committed to regard the wave function as an abstract entity. The third position will be shown to be a merely speculative attempt to derive a primitive ontology from a reified mathematical space. Without entering any discussion about nominalism, I (...) 



Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, if (...) 

The aim of this thesis dissertation is to propose a novel position in the debate on scientific realism, modal empiricism, and to show its fruitfulness when it comes to interpreting the cognitive content of scientific theories. Modal empiricism is an empiricist position, according to which the aim of science is to produce empirically adequate theories rather than true theories. However, it suggests adopting a broader comprehension of experience than traditional versions of empiricism, through a commitment to natural modalities. Following modal (...) 

The paper points out that the modern formulation of Bohm’s quantum theory known as Bohmian mechanics is committed only to particles’ positions and a law of motion. We explain how this view can avoid the open questions that the traditional view faces according to which Bohm’s theory is committed to a wavefunction that is a physical entity over and above the particles, although it is defined on configuration space instead of threedimensional space. We then enquire into the status of the (...) 

In this paper, I critically assess different interpretations of Bohmian mechanics that are not committed to an ontology based on the wave function being an actual physical object that inhabits configuration space. More specifically, my aim is to explore the connection between the denial of configuration space realism and another interpretive debate that is specific to Bohmian mechanics: the quantum potential versus guidance approaches. Whereas defenders of the quantum potential approach to the theory claim that Bohmian mechanics is better formulated (...) 

John Bell proposed an ontology for the GRW modification of quantum mechanics in terms of flashes occurring at space time points. This article spells out the motivation for this ontology, inquires into the status of the wave function in it, critically examines the claim of its being Lorentz invariant, and considers whether it is a parsimonious but nevertheless physically adequate ontology. 

In this paper, I discuss whether the results of loop quantum gravity constitute a fatal blow to Humeanism. There is at least a prima facie reason for believing so: while Humeanism regards spatiotemporal relations as fundamental, LQG describes the fundamental layer of our reality in terms of spin networks, which are not in spacetime. However, the question should be tackled more carefully. After explaining the importance of the debate on the tenability of Humeanism in light of LQG, and having presented (...) 

The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear nonrelativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation invariance and (...) 

The paper shows how the Bohmian approach to quantum physics can be applied to develop a clear and coherent ontology of nonperturbative quantum gravity. We suggest retaining discrete objects as the primitive ontology also when it comes to a quantum theory of spacetime and therefore focus on loop quantum gravity. We conceive atoms of space, represented in terms of nodes linked by edges in a graph, as the primitive ontology of the theory and show how a nonlocal law in which (...) 

In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. / Consequently, this account extends Hartry Field’s program outlined in Science Without Numbers (...) 

I defend the idea that objects and events in threedimensional space are part of the derivative ontology of quantum mechanics, rather than its fundamental ontology. The main objection to this idea stems from the question of how it can endow local beables with physical salience, as opposed to mere mathematical definability. I show that the responses to this objection in the previous literature are insufficient, and I provide the necessary arguments to render them successful. This includes demonstrating the legitimacy of (...) 

In this paper, we propose an ontological interpretation of the wave function in terms of random discontinuous motion of particles. According to this interpretation, the wave function of an Nbody quantum system describes the state of random discontinuous motion of N particles, and in particular, the modulus squared of the wave function gives the probability density that the particles appear in every possible group of positions in space. We present three arguments supporting this new interpretation of the wave function. These (...) 

This paper argues that ontic structural realism (OSR) faces a dilemma: either it remains on the general level of realism with respect to the structure of a given theory, but then it is, like epistemic structural realism, only a partial realism; or it is a complete realism, but then it has to answer the question how the structure of a given theory is implemented, instantiated or realized and thus has to argue for a particular interpretation of the theory in question. (...) 

The paper argues that a causal explanation of the correlated outcomes of EPRtype experiments is desirable and possible. It shows how Bohmian mechanics and the GRW mass density theory offer such an explanation in terms of a nonlocal common cause. 

This thesis is an attempt to reconstruct the conceptual foundations of quantum mechanics. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear nonrelativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation (...) 

Is the quantum state part of the furniture of the world? Einstein found such a position indigestible, but here I present a different understanding of the wavefunction that is easy to stomach. First, I develop the idea that the wavefunction is nomological in nature, showing how the quantum It or Bit debate gets subsumed by the corresponding It or Bit debate about laws of nature. Second, I motivate the nomological view by casting quantum mechanics in a “classical” formalism (Hamilton–Jacobi theory) (...) 

The paper has two aims: (1) it sets out to show that it is well motivated to seek for an account of quantum nonlocality in the framework of ontic structural realism (OSR), which integrates the notions of holism and nonseparability that have been employed since the 1980s to achieve such an account. However, recent research shows that OSR on its own cannot provide such an account. Against this background, the paper argues that by applying OSR to the primitive ontology theories (...) 

The paper explains in what sense the GRW matter density theory is a primitive ontology theory of quantum mechanics and why, thus conceived, the standard objections against the GRW formalism do not apply to GRWm. We consider the different options for conceiving the quantum state in GRWm and argue that dispositionalism is the most attractive one. 

The paper seeks to make progress from stating primitive ontology theories of quantum physics – notably Bohmian mechanics, the GRW matter density theory and the GRW flash theory – to assessing these theories. Four criteria are set out: internal coherence; empirical adequacy; relationship to other theories; explanatory value. The paper argues that the stock objections against these theories do not withstand scrutiny. Its focus then is on their explanatory value: they pursue different strategies to ground the textbook formalism of quantum (...) 

The paper sketches out an ontology of physics in terms of matter being primitive stuff distributed in space and all the properties physics is committed to being dispositions that fix the temporal development of the distribution of matter in space. Whereas such properties can be conceived as intrinsic properties of particles in classical mechanics, in quantum physics, there is a holistic property or structure that relates all matter and that fixes its temporal development. 

This chapter outlines a metaphysics of science in the sense of a naturalized metaphysics. It considers in the first place the interplay of physics and metaphysics in Newtonian mechanics, then goes into the issues for the metaphysics of time that relativity physics raises, shows that what one considers as the referent of quantum theory depends on metaphysical considerations and finally explains how the stance that one takes with respect to objective modality and laws of nature shapes the options that are (...) 

Primitive ontology is a program which seeks to make explicit the ontological commitments of physical theories in terms of a distribution of matter in ordinary spacetime. This program targets wavefunction realism, which interprets the highdimensional configuration space on which wavefunctions are defined as our fundamental physical space. Wavefunction realism allegedly fails to account for a correspondence between the ontology it postulates and the ‘manifest image’ of the world in which experimental tests of the theory are performed, and therefore the wavefunction (...) 

The meaning of the wave function has been a hot topic of debate since the early days of quantum mechanics. Recent years have witnessed a growing interest in this longstanding question. Is the wave function ontic, directly representing a state of reality, or epistemic, merely representing a state of knowledge, or something else? If the wave function is not ontic, then what, if any, is the underlying state of reality? If the wave function is indeed ontic, then exactly what physical (...) 

This paper seeks to answer the following question: What is a minimal set of entities that form an ontology of the natural world, given our wellestablished physical theories? The proposal is that the following two axioms are sufficient to obtain such a minimalist ontology: There are distance relations that individuate simple objects, namely matter points. The matter points are permanent, with the distances between them changing. I sketch out how one can obtain our wellestablished physical theories on the basis of (...) 

The wave function in quantum mechanics presents an interesting challenge to our understanding of the physical world. In this paper, I show that the wave function can be understood as four intrinsic relations on physical space. My account has three desirable features that the standard account lacks: it does not refer to any abstract mathematical objects, it is free from the usual arbitrary conventions, and it explains why the wave function has its gauge degrees of freedom, something that are usually (...) 

I look at the distinction between between realist and antirealist views of the quantum state. I argue that this binary classification should be reconceived as a continuum of different views about which properties of the quantum state are representationally significant. What's more, the extreme cases  all or none  are simply absurd, and should be rejected by all parties. In other words, no sane person should advocate extreme realism or antirealism about the quantum state. And if we focus on (...) 

A salient feature of de BroglieBohm quantum theory is that particles have determinate positions at all times and in all physical contexts. Hence, the trajectory of a particle is a welldefined concept. One then may expect that the closely related notion of inertial trajectory is also unproblematically defined. I show that this expectation is not met. I provide a framework that deploys six different ways in which dBB theory can be interpreted, and I state that only in the canonical interpretation (...) 

Primitive ontology is a recently much discussed approach to the ontology of quantum theory according to which the theory is ultimately about entities in 3dimensional space and their temporal evolution. This paper critically discusses the primitive ontologies that have been suggested within the Bohmian approach to quantum field theory in the light of the existence of unitarily inequivalent representations. These primitive ontologies rely either on a Fock space representation or a wave functional representation, which are strictly speaking unambiguously available only (...) 

This paper argues for a broadly dispositionalist approach to the ontology of Bohmian mechanics . It first distinguishes the ‘minimal’ and the ‘causal’ versions of Bohm’s theory, and then briefly reviews some of the claims advanced on behalf of the ‘causal’ version by its proponents. A number of ontological or interpretive accounts of the wave function in BM are then addressed in detail, including configuration space, multifield, nomological, and dispositional approaches. The main objection to each account is reviewed, namely the (...) 

Some philosophers argue that many contemporary debates in metaphysics are “illegitimate,” “shallow,” or “trivial,” and that “contemporary analytic metaphysics, a professional activity engaged in by some extremely intelligent and morally serious people, fails to qualify as part of the enlightened pursuit of objective truth, and should be discontinued” (Ladyman and Ross, Every thing must go: Metaphysics naturalized , 2007 ). Many of these critics are explicit about their sympathies with Rudolf Carnap and his circle, calling themselves ‘neopositivists’ or ‘neoCarnapians.’ Yet (...) 

It has been widely thought that the ontology of quantum mechanics is real, physical fields. In this paper, I will present a new argument against the field ontology of quantum mechanics by analyzing onebody systems such as an electron. First, I argue that if the physical entity described by the wave function of an electron is a field, then this field is massive and charged. Next, I argue that if a field is massive and charged, then any two parts of (...) 

It is generally argued that if the wavefunction in the de Broglie–Bohm theory is a physical field, it must be a field in configuration space. Nevertheless, it is possible to interpret the wavefunction as a multifield in threedimensional space. This approach hasn’t received the attention yet it really deserves. The aim of this paper is threefold: first, we show that the wavefunction is naturally and straightforwardly construed as a multifield; second, we show why this interpretation is superior to other interpretations (...) 

There are three possible interpretations of the wave function in the de BroglieBohm theory: taking the wave function as corresponding to a physical entity or a property of the Bohmian particles or a law. In this paper, we argue that the first interpretation is favored by an analysis of protective measurements. 

In this article, we give a clearer argument for the reality of the wave function in terms of protective measurements, which does not depend on nontrivial assumptions and also overcomes existing objections. Moreover, based on an analysis of the mass and charge properties of a quantum system, we propose a new ontological interpretation of the wave function. According to this interpretation, the wave function of an Nbody system represents the state of motion of N particles. Moreover, the motion of particles (...) 

It is shown that the de BroglieBohm theory has a potential problem concerning the charge distribution of a quantum system such as an electron. According to the guidance equation of the theory, the electron's charge is localized in a position where its Bohmian particle is. But according to the Schrödinger equation of the theory, the electron's charge is not localized in one position but distributed throughout space, and the charge density in each position is proportional to the modulus square of (...) 

We show that the de BroglieBohm theory is inconsistent with the established parts of quantum mechanics concerning its physical content. According to the de BroglieBohm theory, the mass and charge of an electron are localized in a position where its Bohmian particle is. However, protective measurement implies that they are not localized in one position but distributed throughout space, and the mass and charge density of the electron in each position is proportional to the modulus square of its wave function (...) 

In this paper, we focus on two related reductive theses in metaphysics—Humean Supervenience and Composition as Identity—and on their status in light of the indications coming from science, in particular quantum mechanics. While defenders of these reductive theses claim that they can be updated so as to resist the quantum evidence, we provide arguments against this contention. We claim that physics gives us reason for thinking that both Humean Supervenience and Composition as Identity are at least contingently false, as the (...) 

