Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Solving Pell equations locally in models of IΔ0.Paola D'Aquino - 1998 - Journal of Symbolic Logic 63 (2):402-410.
    In [4] it is shown that only using exponentiation can one prove the existence of non trivial solutions of Pell equations in IΔ 0 . However, in this paper we will prove that any Pell equation has a non trivial solution modulo m for every m in IΔ 0.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Count(ifq) does not imply Count.Søren Riis - 1997 - Annals of Pure and Applied Logic 90 (1-3):1-56.
    It is shown that the elementary principles Count and Count are logically independent in the system IΔ0 of Bounded Arithmetic. More specifically it is shown that Count implies Count exactly when each prime factor in p is a factor in q.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The prime number theorem and fragments ofP A.C. Cornaros & C. Dimitracopoulos - 1994 - Archive for Mathematical Logic 33 (4):265-281.
    We show that versions of the prime number theorem as well as equivalent statements hold in an arbitrary model ofIΔ 0+exp.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • End extensions of models of linearly bounded arithmetic.Domenico Zambella - 1997 - Annals of Pure and Applied Logic 88 (2-3):263-277.
    We show that every model of IΔ0 has an end extension to a model of a theory where log-space computable function are formalizable. We also show the existence of an isomorphism between models of IΔ0 and models of linear arithmetic LA.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On bounded arithmetic augmented by the ability to count certain sets of primes.Alan R. Woods & Ch Cornaros - 2009 - Journal of Symbolic Logic 74 (2):455-473.
    Over 25 years ago, the first author conjectured in [15] that the existence of arbitrarily large primes is provable from the axioms I Δ₀(π) + def(π), where π(x) is the number of primes not exceeding x, IΔ₀(π) denotes the theory of Δ₀ induction for the language of arithmetic including the new function symbol π, and de f(π) is an axiom expressing the usual recursive definition of π. We prove a modified version in which π is replaced by a more general (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Toward the Limits of the Tennenbaum Phenomenon.Paola D'Aquino - 1997 - Notre Dame Journal of Formal Logic 38 (1):81-92.
    We consider the theory and its weak fragments in the language of arithmetic expanded with the functional symbol . We prove that and its weak fragments, down to and , are subject to the Tennenbaum phenomenon with respect to , , and . For the last two theories it is still unknown if they may have nonstandard recursive models in the usual language of arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (2 other versions)Euler'sϕ-function in the context of IΔ 0.Marc Jumelet - 1995 - Archive for Mathematical Logic 34 (3):197-209.
    It is demonstrated that we can represent Euler's φ-function by means of a Δ0-formula in such a way that the theory IΔ 0 proves the recursion equations that are characteristic for this function.
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Euler's?-function in the context of I? 0.Marc Jumelet - 1995 - Archive for Mathematical Logic 34 (3):197-209.
    It is demonstrated that we can represent Euler's φ-function by means of a Δ0-formula in such a way that the theory IΔ 0 proves the recursion equations that are characteristic for this function.
    Download  
     
    Export citation  
     
    Bookmark  
  • Abelian groups and quadratic residues in weak arithmetic.Emil Jeřábek - 2010 - Mathematical Logic Quarterly 56 (3):262-278.
    We investigate the provability of some properties of abelian groups and quadratic residues in variants of bounded arithmetic. Specifically, we show that the structure theorem for finite abelian groups is provable in S22 + iWPHP, and use it to derive Fermat's little theorem and Euler's criterion for the Legendre symbol in S22 + iWPHP extended by the pigeonhole principle PHP. We prove the quadratic reciprocity theorem in the arithmetic theories T20 + Count2 and I Δ0 + Count2 with modulo-2 counting (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Two (or three) notions of finitism.Mihai Ganea - 2010 - Review of Symbolic Logic 3 (1):119-144.
    Finitism is given an interpretation based on two ideas about strings (sequences of symbols): a replacement principle extracted from Hilberts class 2 can be justified by means of an additional finitistic choice principle, thus obtaining a second equational theory . It is unknown whether is strictly stronger than since 2 may coincide with the class of lower elementary functions.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Finitistic Arithmetic and Classical Logic.Mihai Ganea - 2014 - Philosophia Mathematica 22 (2):167-197.
    It can be argued that only the equational theories of some sub-elementary function algebras are finitistic or intuitive according to a certain interpretation of Hilbert's conception of intuition. The purpose of this paper is to investigate the relation of those restricted forms of equational reasoning to classical quantifier logic in arithmetic. The conclusion reached is that Edward Nelson's ‘predicative arithmetic’ program, which makes essential use of classical quantifier logic, cannot be justified finitistically and thus requires a different philosophical foundation, possibly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quadratic forms in models of IΔ0+ Ω1, Part II: Local equivalence.Paola D’Aquino & Angus Macintyre - 2011 - Annals of Pure and Applied Logic 162 (6):447-456.
    In this second paper of the series we do a local analysis of quadratic forms over completions of a non-standard model of IΔ0+Ω1.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quadratic forms in models of I Δ 0 + Ω 1. I.Paola D’Aquino & Angus Macintyre - 2007 - Annals of Pure and Applied Logic 148 (1):31-48.
    Gauss used quadratic forms in his second proof of quadratic reciprocity. In this paper we begin to develop a theory of binary quadratic forms over weak fragments of Peano Arithmetic, with a view to reproducing Gauss’ proof in this setting.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Grzegorczyk induction.Ch Cornaros - 1995 - Annals of Pure and Applied Logic 74 (1):1-21.
    We investigate the “mathematical” strength of the theory I*2. In particular we prove the quadratic reciprocity law and Bertrand's postulate, using fragments of I*2 which employ some well-known number-theoretic functions.
    Download  
     
    Export citation  
     
    Bookmark   4 citations