Switch to: References

Add citations

You must login to add citations.
  1. The universal modality, the center of a Heyting algebra, and the Blok–Esakia theorem.Guram Bezhanishvili - 2010 - Annals of Pure and Applied Logic 161 (3):253-267.
    We introduce the bimodal logic , which is the extension of Bennett’s bimodal logic by Grzegorczyk’s axiom □→p)→p and show that the lattice of normal extensions of the intuitionistic modal logic WS5 is isomorphic to the lattice of normal extensions of , thus generalizing the Blok–Esakia theorem. We also introduce the intuitionistic modal logic WS5.C, which is the extension of WS5 by the axiom →, and the bimodal logic , which is the extension of Shehtman’s bimodal logic by Grzegorczyk’s axiom, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An Algebraic Study of S5-Modal Gödel Logic.Diego Castaño, Cecilia Cimadamore, José Patricio Díaz Varela & Laura Rueda - 2021 - Studia Logica 109 (5):937-967.
    In this paper we continue the study of the variety \ of monadic Gödel algebras. These algebras are the equivalent algebraic semantics of the S5-modal expansion of Gödel logic, which is equivalent to the one-variable monadic fragment of first-order Gödel logic. We show three families of locally finite subvarieties of \ and give their equational bases. We also introduce a topological duality for monadic Gödel algebras and, as an application of this representation theorem, we characterize congruences and give characterizations of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Proof-Theoretic Approach to Negative Translations in Intuitionistic Tense Logics.Zhe Lin & Minghui Ma - 2022 - Studia Logica 110 (5):1255-1289.
    A cut-free Gentzen sequent calculus for Ewald’s intuitionistic tense logic \ is established. By the proof-theoretic method, we prove that, for every set of strictly positive implications S, the classical tense logic \ is embedded into its intuitionistic analogue \ via Kolmogorov, Gödel–Genzten and Kuroda translations respectively. A sufficient and necessary condition for Glivenko type theorem in tense logics is established.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.
    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An Approach to Glivenko’s Theorem in Algebraizable Logics.Antoni Torrens - 2008 - Studia Logica 88 (3):349-383.
    In a classical paper [15] V. Glivenko showed that a proposition is classically demonstrable if and only if its double negation is intuitionistically demonstrable. This result has an algebraic formulation: the double negation is a homomorphism from each Heyting algebra onto the Boolean algebra of its regular elements. Versions of both the logical and algebraic formulations of Glivenko’s theorem, adapted to other systems of logics and to algebras not necessarily related to logic can be found in the literature (see [2, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Metalogic of Intuitionistic Propositional Calculus.Alex Citkin - 2010 - Notre Dame Journal of Formal Logic 51 (4):485-502.
    With each superintuitionistic propositional logic L with a disjunction property we associate a set of modal logics the assertoric fragment of which is L . Each formula of these modal logics is interdeducible with a formula representing a set of rules admissible in L . The smallest of these logics contains only formulas representing derivable in L rules while the greatest one contains formulas corresponding to all admissible in L rules. The algebraic semantic for these logics is described.
    Download  
     
    Export citation  
     
    Bookmark   1 citation