Switch to: References

Add citations

You must login to add citations.
  1. Topological aspects of the Medvedev lattice.Andrew Em Lewis, Richard A. Shore & Andrea Sorbi - 2011 - Archive for Mathematical Logic 50 (3-4):319-340.
    We study the Medvedev degrees of mass problems with distinguished topological properties, such as denseness, closedness, or discreteness. We investigate the sublattices generated by these degrees; the prime ideal generated by the dense degrees and its complement, a prime filter; the filter generated by the nonzero closed degrees and the filter generated by the nonzero discrete degrees. We give a complete picture of the relationships of inclusion holding between these sublattices, these filters, and this ideal. We show that the sublattice (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Comparing the degrees of enumerability and the closed Medvedev degrees.Paul Shafer & Andrea Sorbi - 2019 - Archive for Mathematical Logic 58 (5-6):527-542.
    We compare the degrees of enumerability and the closed Medvedev degrees and find that many situations occur. There are nonzero closed degrees that do not bound nonzero degrees of enumerability, there are nonzero degrees of enumerability that do not bound nonzero closed degrees, and there are degrees that are nontrivially both degrees of enumerability and closed degrees. We also show that the compact degrees of enumerability exactly correspond to the cototal enumeration degrees.
    Download  
     
    Export citation  
     
    Bookmark  
  • Coding true arithmetic in the Medvedev and Muchnik degrees.Paul Shafer - 2011 - Journal of Symbolic Logic 76 (1):267 - 288.
    We prove that the first-order theory of the Medvedev degrees, the first-order theory of the Muchnik degrees, and the third-order theory of true arithmetic are pairwise recursively isomorphic (obtained independently by Lewis, Nies, and Sorbi [7]). We then restrict our attention to the degrees of closed sets and prove that the following theories are pairwise recursively isomorphic: the first-order theory of the closed Medvedev degrees, the first-order theory of the compact Medvedev degrees, the first-order theory of the closed Muchnik degrees, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Coding true arithmetic in the Medvedev degrees of classes.Paul Shafer - 2012 - Annals of Pure and Applied Logic 163 (3):321-337.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Characterizing the Join-Irreducible Medvedev Degrees.Paul Shafer - 2011 - Notre Dame Journal of Formal Logic 52 (1):21-38.
    We characterize the join-irreducible Medvedev degrees as the degrees of complements of Turing ideals, thereby solving a problem posed by Sorbi. We use this characterization to prove that there are Medvedev degrees above the second-least degree that do not bound any join-irreducible degrees above this second-least degree. This solves a problem posed by Sorbi and Terwijn. Finally, we prove that the filter generated by the degrees of closed sets is not prime. This solves a problem posed by Bianchini and Sorbi.
    Download  
     
    Export citation  
     
    Bookmark   5 citations