Switch to: References

Add citations

You must login to add citations.
  1. Axiomatizing a Minimal Discussive Logic.Oleg Grigoriev, Marek Nasieniewski, Krystyna Mruczek-Nasieniewska, Yaroslav Petrukhin & Vasily Shangin - 2023 - Studia Logica 111 (5):855-895.
    In the paper we analyse the problem of axiomatizing the minimal variant of discussive logic denoted as $$ {\textsf {D}}_{\textsf {0}}$$ D 0. Our aim is to give its axiomatization that would correspond to a known axiomatization of the original discussive logic $$ {\textsf {D}}_{\textsf {2}}$$ D 2. The considered system is minimal in a class of discussive logics. It is defined similarly, as Jaśkowski’s logic $$ {\textsf {D}}_{\textsf {2}}$$ D 2 but with the help of the deontic normal logic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Method of Generating Modal Logics Defining Jaśkowski’s Discussive Logic D2.Marek Nasieniewski & Andrzej Pietruszczak - 2011 - Studia Logica 97 (1):161-182.
    Jaśkowski’s discussive logic D2 was formulated with the help of the modal logic S5 as follows (see [7, 8]): \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A \in {D_{2}}}$$\end{document} iff \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ulcorner\diamond{{A}^{\bullet}}\urcorner \in {\rm S}5}$$\end{document}, where (–)• is a translation of discussive formulae from Ford into the modal language. We say that a modal logic L defines D2 iff \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm D}_{2} = (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Some paraconsistent sentential calculi.Jerzy J. Błaszczuk - 1984 - Studia Logica 43 (1-2):51 - 61.
    In [8] Jakowski defined by means of an appropriate interpretation a paraconsistent calculusD 2 . In [9] J. Kotas showed thatD 2 is equivalent to the calculusM(S5) whose theses are exactly all formulasa such thatMa is a thesis ofS5. The papers [11], [7], [3], and [4] showed that interesting paraconsistent calculi could be obtained using modal systems other thanS5 and modalities other thanM. This paper generalises the above work. LetA be an arbitrary modality (i.e. string ofM''s,L''s and negation signs). Then (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation