Switch to: References

Add citations

You must login to add citations.
  1. On Paracomplete Versions of Jaśkowski's Discussive Logic.Krystyna Mruczek-Nasieniewska, Yaroslav Petrukhin & Vasily Shangin - 2024 - Bulletin of the Section of Logic 53 (1):29-61.
    Jaśkowski's discussive (discursive) logic D2 is historically one of the first paraconsistent logics, i.e., logics which 'tolerate' contradictions. Following Jaśkowski's idea to define his discussive logic by means of the modal logic S5 via special translation functions between discussive and modal languages, and supporting at the same time the tradition of paracomplete logics being the counterpart of paraconsistent ones, we present a paracomplete discussive logic D2p.
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatizing a Minimal Discussive Logic.Oleg Grigoriev, Marek Nasieniewski, Krystyna Mruczek-Nasieniewska, Yaroslav Petrukhin & Vasily Shangin - 2023 - Studia Logica 111 (5):855-895.
    In the paper we analyse the problem of axiomatizing the minimal variant of discussive logic denoted as $$ {\textsf {D}}_{\textsf {0}}$$ D 0. Our aim is to give its axiomatization that would correspond to a known axiomatization of the original discussive logic $$ {\textsf {D}}_{\textsf {2}}$$ D 2. The considered system is minimal in a class of discussive logics. It is defined similarly, as Jaśkowski’s logic $$ {\textsf {D}}_{\textsf {2}}$$ D 2 but with the help of the deontic normal logic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A modal extension of Jaśkowski’s discussive logic $\textbf{D}_\textbf{2}$.Krystyna Mruczek-Nasieniewska, Marek Nasieniewski & Andrzej Pietruszczak - 2019 - Logic Journal of the IGPL 27 (4):451-477.
    In Jaśkowski’s model of discussion, discussive connectives represent certain interactions that can hold between debaters. However, it is not possible within the model for participants to use explicit modal operators. In the paper we present a modal extension of the discussive logic $\textbf{D}_{\textbf{2}}$ that formally corresponds to an extended version of Jaśkowski’s model of discussion that permits such a use. This logic is denoted by $\textbf{m}\textbf{D}_{\textbf{2}}$. We present philosophical motivations for the formulation of this logic. We also give syntactic characterizations (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logic, Reasoning, and Rationality.Erik Weber, Joke Meheus & Dietlinde Wouters (eds.) - 2014 - Dordrecht, Netherland: Springer.
    This book contains a selection of the papers presented at the Logic, Reasoning and Rationality 2010 conference in Ghent. The conference aimed at stimulating the use of formal frameworks to explicate concrete cases of human reasoning, and conversely, to challenge scholars in formal studies by presenting them with interesting new cases of actual reasoning. According to the members of the Wiener Kreis, there was a strong connection between logic, reasoning, and rationality and that human reasoning is rational in so far (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Simplified Kripke-Style Semantics for Some Normal Modal Logics.Andrzej Pietruszczak, Mateusz Klonowski & Yaroslav Petrukhin - 2020 - Studia Logica 108 (3):451-476.
    Pietruszczak (Bull Sect Log 38(3/4):163–171, 2009) proved that the normal logics K45 , KB4 (=KB5), KD45 are determined by suitable classes of simplified Kripke frames of the form ⟨W,A⟩ , where A⊆W. In this paper, we extend this result. Firstly, we show that a modal logic is determined by a class composed of simplified frames if and only if it is a normal extension of K45. Furthermore, a modal logic is a normal extension of K45 (resp. KD45; KB4; S5) if (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the weakest modal logics defining jaśkowski's logic d2 and the d2-consequence.Marek Nasieniewski & Andrzej Pietruszczak - 2012 - Bulletin of the Section of Logic 41 (3/4):215-232.
    Download  
     
    Export citation  
     
    Bookmark   3 citations