Switch to: References

Add citations

You must login to add citations.
  1. Towards a Conceptual Framework for Conspiracy Theory Theories.Niki Pfeifer - 2023 - Social Epistemology 37 (4):510-521.
    I present a conceptual framework for classifying generalist and particularist approaches to conspiracy theories (CTs). Specifically, I exploit a probabilistic version of the hexagon of opposition which allows for systematically visualising the logical relations among basic philosophical positions concerning CTs. The probabilistic interpretation can also account for positions, which make weaker claims about CTs: e.g. instead of claiming ‘every CT is suspicious’ some theorists might prefer to claim ‘most CTs are suspicious’ and then ask about logical consequences of such claims. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Contrariety re-encountered: nonstandard contraries and internal negation **.Lloyd Humberstone - 2023 - Logic Journal of the IGPL 31 (6):1084-1134.
    This discussion explores the possibility of distinguishing a tighter notion of contrariety evident in the Square of Opposition, especially in its modal incarnations, than as that binary relation holding statements that cannot both be true, with or without the added rider ‘though can both be false’. More than one theorist has voiced the intuition that the paradigmatic contraries of the traditional Square are related in some such tighter way—involving the specific role played by negation in contrasting them—that distinguishes them from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Graded Structures of Opposition in Fuzzy Natural Logic.Petra Murinová - 2020 - Logica Universalis 14 (4):495-522.
    The main objective of this paper is devoted to two main parts. First, the paper introduces logical interpretations of classical structures of opposition that are constructed as extensions of the square of opposition. Blanché’s hexagon as well as two cubes of opposition proposed by Morreti and pairs Keynes–Johnson will be introduced. The second part of this paper is dedicated to a graded extension of the Aristotle’s square and Peterson’s square of opposition with intermediate quantifiers. These quantifiers are linguistic expressions such (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logical Geometries and Information in the Square of Oppositions.Hans Smessaert & Lorenz Demey - 2014 - Journal of Logic, Language and Information 23 (4):527-565.
    The Aristotelian square of oppositions is a well-known diagram in logic and linguistics. In recent years, several extensions of the square have been discovered. However, these extensions have failed to become as widely known as the square. In this paper we argue that there is indeed a fundamental difference between the square and its extensions, viz., a difference in informativity. To do this, we distinguish between concrete Aristotelian diagrams and, on a more abstract level, the Aristotelian geometry. We then introduce (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The power of the hexagon.Jean-Yves Béziau - 2012 - Logica Universalis 6 (1-2):1-43.
    The hexagon of opposition is an improvement of the square of opposition due to Robert Blanché. After a short presentation of the square and its various interpretations, we discuss two important problems related with the square: the problem of the I-corner and the problem of the O-corner. The meaning of the notion described by the I-corner does not correspond to the name used for it. In the case of the O-corner, the problem is not a wrong-name problem but a no-name (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • From Blanché’s Hexagonal Organization of Concepts to Formal Concept Analysis and Possibility Theory.Didier Dubois & Henri Prade - 2012 - Logica Universalis 6 (1-2):149-169.
    The paper first introduces a cube of opposition that associates the traditional square of opposition with the dual square obtained by Piaget’s reciprocation. It is then pointed out that Blanché’s extension of the square-of-opposition structure into an conceptual hexagonal structure always relies on an abstract tripartition. Considering quadripartitions leads to organize the 16 binary connectives into a regular tetrahedron. Lastly, the cube of opposition, once interpreted in modal terms, is shown to account for a recent generalization of formal concept analysis, (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Disentangling Contradiction from Contrariety via Incompatibility.Jean-Yves Beziau - 2016 - Logica Universalis 10 (2-3):157-170.
    Contradiction is often confused with contrariety. We propose to disentangle contrariety from contradiction using the hexagon of opposition, providing a clear and distinct characterization of three notions: contrariety, contradiction, incompatibility. At the same time, this hexagonal structure describes and explains the relations between them.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Between Square and Hexagon in Oresme’s Livre du Ciel et du Monde.Lorenz Demey - 2019 - History and Philosophy of Logic 41 (1):36-47.
    In logic, Aristotelian diagrams are almost always assumed to be closed under negation, and are thus highly symmetric in nature. In linguistics, by contrast, these diagrams are used to study lexicalization, which is notoriously not closed under negation, thus yielding more asymmetric diagrams. This paper studies the interplay between logical symmetry and linguistic asymmetry in Aristotelian diagrams. I discuss two major symmetric Aristotelian diagrams, viz. the square and the hexagon of opposition, and show how linguistic considerations yield various asymmetric versions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Metalogical Decorations of Logical Diagrams.Lorenz Demey & Hans Smessaert - 2016 - Logica Universalis 10 (2-3):233-292.
    In recent years, a number of authors have started studying Aristotelian diagrams containing metalogical notions, such as tautology, contradiction, satisfiability, contingency, strong and weak interpretations of contrariety, etc. The present paper is a contribution to this line of research, and its main aims are both to extend and to deepen our understanding of metalogical diagrams. As for extensions, we not only study several metalogical decorations of larger and less widely known Aristotelian diagrams, but also consider metalogical decorations of another type (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Deontological Square, Hexagon, and Decagon: A Deontic Framework for Supererogation.Jan C. Joerden - 2012 - Logica Universalis 6 (1):201-216.
    The article expands the traditional system of concepts used in deontic logic, in order to allow the inclusion of supererogatory behaviour. This requires the development of a deontic decagon. In addition, it is shown how this decagon can be used to interpret deontic terms, e.g. in Islamic Law.
    Download  
     
    Export citation  
     
    Bookmark   5 citations