Switch to: References

Add citations

You must login to add citations.
  1. Why Combine Logics?Patrick Blackburn & Maarten de Rijke - 1997 - Studia Logica 59 (1):5 - 27.
    Combining logics has become a rapidly expanding enterprise that is inspired mainly by concerns about modularity and the wish to join together tailor made logical tools into more powerful but still manageable ones. A natural question is whether it offers anything new over and above existing standard languages. By analysing a number of applications where combined logics arise, we argue that combined logics are a potentially valuable tool in applied logic, and that endorsements of standard languages often miss the point. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Zooming in, Zooming Out.Patrick Blackburn & Maarten de Rijke - 1997 - Journal of Logic, Language and Information 6 (1):5-31.
    This is an exploratory paper about combining logics, combining theories and combining structures. Typically when one applies logic to such areas as computer science, artificial intelligence or linguistics, one encounters hybrid ontologies. The aim of this paper is to identify plausible strategies for coping with ontological richness.
    Download  
     
    Export citation  
     
    Bookmark  
  • Limits for Paraconsistent Calculi.Walter A. Carnielli & João Marcos - 1999 - Notre Dame Journal of Formal Logic 40 (3):375-390.
    This paper discusses how to define logics as deductive limits of sequences of other logics. The case of da Costa's hierarchy of increasingly weaker paraconsistent calculi, known as $ \mathcal {C}$n, 1 $ \leq$ n $ \leq$ $ \omega$, is carefully studied. The calculus $ \mathcal {C}$$\scriptstyle \omega$, in particular, constitutes no more than a lower deductive bound to this hierarchy and differs considerably from its companions. A long standing problem in the literature (open for more than 35 years) is (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Modal Multilogic of Geometry.Philippe Balbiani - 1998 - Journal of Applied Non-Classical Logics 8 (3):259-281.
    ABSTRACT A spatial logic is a modal logic of which the models are the mathematical models of space. Successively considering the mathematical models of space that are the incidence geometry and the projective geometry, we will successively establish the language, the semantical basis, the axiomatical presentation, the proof of the decidability and the proof of the completeness of INC, the modal multilogic of incidence geometry, and PRO, the modal multilogic of projective geometry.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Temporal Logics with Reference Pointers and Computation Tree Logics.Valentin Goranko - 2000 - Journal of Applied Non-Classical Logics 10 (3):221-242.
    A complete axiomatic system CTL$_{rp}$ is introduced for a temporal logic for finitely branching $\omega^+$-trees in a temporal language extended with so called reference pointers. Syntactic and semantic interpretations are constructed for the branching time computation tree logic CTL$^{*}$ into CTL$_{rp}$. In particular, that yields a complete axiomatization for the translations of all valid CTL$^{*}$-formulae. Thus, the temporal logic with reference pointers is brought forward as a simpler (with no path quantifiers), but in a way more expressive medium for reasoning (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations