Switch to: References

Add citations

You must login to add citations.
  1. Oppositions and opposites.Fabien Schang - 2012 - In Jean-Yves Béziau & Dale Jacquette (eds.), Around and Beyond the Square of Opposition. New York: Springer Verlag. pp. 147--173.
    A formal theory of oppositions and opposites is proposed on the basis of a non- Fregean semantics, where opposites are negation-forming operators that shed some new light on the connection between opposition and negation. The paper proceeds as follows. After recalling the historical background, oppositions and opposites are compared from a mathematical perspective: the first occurs as a relation, the second as a function. Then the main point of the paper appears with a calculus of oppositions, by means of a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Contrariety re-encountered: nonstandard contraries and internal negation **.Lloyd Humberstone - 2023 - Logic Journal of the IGPL 31 (6):1084-1134.
    This discussion explores the possibility of distinguishing a tighter notion of contrariety evident in the Square of Opposition, especially in its modal incarnations, than as that binary relation holding statements that cannot both be true, with or without the added rider ‘though can both be false’. More than one theorist has voiced the intuition that the paradigmatic contraries of the traditional Square are related in some such tighter way—involving the specific role played by negation in contrasting them—that distinguishes them from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Arithmetization of Logical Oppositions.Fabien Schang - 2016 - In Jean-Yves Béziau & Gianfranco Basti (eds.), The Square of Opposition: A Cornerstone of Thought. Basel, Switzerland: Birkhäuser. pp. 215-237.
    An arithmetic theory of oppositions is devised by comparing expressions, Boolean bitstrings, and integers. This leads to a set of correspondences between three domains of investigation, namely: logic, geometry, and arithmetic. The structural properties of each area are investigated in turn, before justifying the procedure as a whole. Io finish, I show how this helps to improve the logical calculus of oppositions, through the consideration of corresponding operations between integers.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Epistemic Pluralism.Fabien Schang - 2017 - Logique Et Analyse 239 (60):337-353.
    The present paper wants to promote epistemic pluralism as an alternative view of non-classical logics. For this purpose, a bilateralist logic of acceptance and rejection is developed in order to make an important di erence between several concepts of epistemology, including information and justi cation. Moreover, the notion of disagreement corresponds to a set of epistemic oppositions between agents. The result is a non-standard theory of opposition for many-valued logics, rendering total and partial disagreement in terms of epistemic negation and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The power of the hexagon.Jean-Yves Béziau - 2012 - Logica Universalis 6 (1-2):1-43.
    The hexagon of opposition is an improvement of the square of opposition due to Robert Blanché. After a short presentation of the square and its various interpretations, we discuss two important problems related with the square: the problem of the I-corner and the problem of the O-corner. The meaning of the notion described by the I-corner does not correspond to the name used for it. In the case of the O-corner, the problem is not a wrong-name problem but a no-name (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Is the Principle of Contradiction a Consequence of $$x^{2}=x$$ x 2 = x?Jean-Yves Beziau - 2018 - Logica Universalis 12 (1-2):55-81.
    According to Boole it is possible to deduce the principle of contradiction from what he calls the fundamental law of thought and expresses as \. We examine in which framework this makes sense and up to which point it depends on notation. This leads us to make various comments on the history and philosophy of modern logic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Why the Logical Hexagon?Alessio Moretti - 2012 - Logica Universalis 6 (1-2):69-107.
    The logical hexagon (or hexagon of opposition) is a strange, yet beautiful, highly symmetrical mathematical figure, mysteriously intertwining fundamental logical and geometrical features. It was discovered more or less at the same time (i.e. around 1950), independently, by a few scholars. It is the successor of an equally strange (but mathematically less impressive) structure, the “logical square” (or “square of opposition”), of which it is a much more general and powerful “relative”. The discovery of the former did not raise interest, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Logical Squares for Classical Logic Sentences.Urszula Wybraniec-Skardowska - 2016 - Logica Universalis 10 (2-3):293-312.
    In this paper, with reference to relationships of the traditional square of opposition, we establish all the relations of the square of opposition between complex sentences built from the 16 binary and four unary propositional connectives of the classical propositional calculus. We illustrate them by means of many squares of opposition and, corresponding to them—octagons, hexagons or other geometrical objects.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The New Rising of the Square of Opposition.Jean-Yves Béziau - 2012 - In Jean-Yves Béziau & Dale Jacquette (eds.), Around and Beyond the Square of Opposition. New York: Springer Verlag. pp. 3--19.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Natural deduction and arbitrary objects.Kit Fine - 1985 - Journal of Philosophical Logic 14 (1):57 - 107.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The Vatican Square.Jean-Yves Beziau & Raffaela Giovagnoli - 2016 - Logica Universalis 10 (2-3):135-141.
    After explaining the interdisciplinary aspect of the series of events organized around the square of opposition since 2007, we discuss papers related to the 4th World Congress on the Square of Opposition which was organized in the Vatican at the Pontifical Lateran University in 2014. We distinguish three categories of work: those dealing with the evolution and development of the theory of opposition, those using the square as a metalogical tool to give a better understanding of various systems of logic (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations