Switch to: References

Add citations

You must login to add citations.
  1. Varieties of complex algebras.Robert Goldblatt - 1989 - Annals of Pure and Applied Logic 44 (3):173-242.
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • Mathematical modal logic: A view of its evolution.Robert Goldblatt - 2003 - Journal of Applied Logic 1 (5-6):309-392.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Shifting Priorities: Simple Representations for Twenty-seven Iterated Theory Change Operators.Hans Rott - 2009 - In Jacek Malinowski David Makinson & Wansing Heinrich (eds.), Towards Mathematical Philosophy. Springer. pp. 269–296.
    Prioritized bases, i.e., weakly ordered sets of sentences, have been used for specifying an agent’s ‘basic’ or ‘explicit’ beliefs, or alternatively for compactly encoding an agent’s belief state without the claim that the elements of a base are in any sense basic. This paper focuses on the second interpretation and shows how a shifting of priorities in prioritized bases can be used for a simple, constructive and intuitive way of representing a large variety of methods for the change of belief (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • The Lattice of Super-Belnap Logics.Adam Přenosil - 2023 - Review of Symbolic Logic 16 (1):114-163.
    We study the lattice of extensions of four-valued Belnap–Dunn logic, called super-Belnap logics by analogy with superintuitionistic logics. We describe the global structure of this lattice by splitting it into several subintervals, and prove some new completeness theorems for super-Belnap logics. The crucial technical tool for this purpose will be the so-called antiaxiomatic (or explosive) part operator. The antiaxiomatic (or explosive) extensions of Belnap–Dunn logic turn out to be of particular interest owing to their connection to graph theory: the lattice (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Algebraization of quantifier logics, an introductory overview.István Németi - 1991 - Studia Logica 50 (3):485 - 569.
    This paper is an introduction: in particular, to algebras of relations of various ranks, and in general, to the part of algebraic logic algebraizing quantifier logics. The paper has a survey character, too. The most frequently used algebras like cylindric-, relation-, polyadic-, and quasi-polyadic algebras are carefully introduced and intuitively explained for the nonspecialist. Their variants, connections with logic, abstract model theory, and further algebraic logics are also reviewed. Efforts were made to make the review part relatively comprehensive. In some (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Modal logic: A semantic perspective.Patrick Blackburn & Johan van Benthem - 1988 - Ethics 98:501-517.
    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 BASIC MODAL LOGIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • (1 other version)Algebraic aspects of deduction theorems.Janusz Czelakowski - 1985 - Studia Logica 44 (4):369 - 387.
    The first known statements of the deduction theorems for the first-order predicate calculus and the classical sentential logic are due to Herbrand [8] and Tarski [14], respectively. The present paper contains an analysis of closure spaces associated with those sentential logics which admit various deduction theorems. For purely algebraic reasons it is convenient to view deduction theorems in a more general form: given a sentential logic C (identified with a structural consequence operation) in a sentential language I, a quite arbitrary (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • The structure of lattices of subframe logics.Frank Wolter - 1997 - Annals of Pure and Applied Logic 86 (1):47-100.
    This paper investigates the structure of lattices of normal mono- and polymodal subframelogics, i.e., those modal logics whose frames are closed under a certain type of substructures. Nearly all basic modal logics belong to this class. The main lattice theoretic tool applied is the notion of a splitting of a complete lattice which turns out to be connected with the “geometry” and “topology” of frames, with Kripke completeness and with axiomatization problems. We investigate in detail subframe logics containing K4, those (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • An almost general splitting theorem for modal logic.Marcus Kracht - 1990 - Studia Logica 49 (4):455 - 470.
    Given a normal (multi-)modal logic a characterization is given of the finitely presentable algebras A whose logics L A split the lattice of normal extensions of . This is a substantial generalization of Rautenberg [10] and [11] in which is assumed to be weakly transitive and A to be finite. We also obtain as a direct consequence a result by Blok [2] that for all cycle-free and finite A L A splits the lattice of normal extensions of K. Although we (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • An Algebraic Approach to Canonical Formulas: Intuitionistic Case.Guram Bezhanishvili - 2009 - Review of Symbolic Logic 2 (3):517.
    We introduce partial Esakia morphisms, well partial Esakia morphisms, and strong partial Esakia morphisms between Esakia spaces and show that they provide the dual description of (∧, →) homomorphisms, (∧, →, 0) homomorphisms, and (∧, →, ∨) homomorphisms between Heyting algebras, thus establishing a generalization of Esakia duality. This yields an algebraic characterization of Zakharyaschev’s subreductions, cofinal subreductions, dense subreductions, and the closed domain condition. As a consequence, we obtain a new simplified proof (which is algebraic in nature) of Zakharyaschev’s (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Logics without the contraction rule and residuated lattices.Hiroakira Ono - 2010 - Australasian Journal of Logic 8:50-81.
    In this paper, we will develop an algebraic study of substructural propositional logics over FLew, i.e. the logic which is obtained from intuitionistic logics by eliminating the contraction rule. Our main technical tool is to use residuated lattices as the algebraic semantics for them. This enables us to study different kinds of nonclassical logics, including intermediate logics, BCK-logics, Lukasiewicz’s many-valued logics and fuzzy logics, within a uniform framework.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Simulation and transfer results in modal logic – a survey.Marcus Kracht & Frank Wolter - 1997 - Studia Logica 59 (2):149-177.
    This papers gives a survey of recent results about simulations of one class of modal logics by another class and of the transfer of properties of modal logics under extensions of the underlying modal language. We discuss: the transfer from normal polymodal logics to their fusions, the transfer from normal modal logics to their extensions by adding the universal modality, and the transfer from normal monomodal logics to minimal tense extensions. Likewise, we discuss simulations of normal polymodal logics by normal (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Kripke Incomplete Logics Containing KTB.Yutaka Miyazaki - 2007 - Studia Logica 85 (3):303-317.
    It is shown that there is a Kripke incomplete logic in NExt(KTB ⊕ □2 p → □3 p). Furthermore, it is also shown that there exists a continuum of Kripke incomplete logics in NExt(KTB ⊕ □5 p → □6 p).
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On varieties of cylindric algebras with applications to logic.I. Németi - 1987 - Annals of Pure and Applied Logic 36:235-277.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Erdős graphs resolve fine's canonicity problem.Robert Goldblatt, Ian Hodkinson & Yde Venema - 2004 - Bulletin of Symbolic Logic 10 (2):186-208.
    We show that there exist 2 ℵ 0 equational classes of Boolean algebras with operators that are not generated by the complex algebras of any first-order definable class of relational structures. Using a variant of this construction, we resolve a long-standing question of Fine, by exhibiting a bimodal logic that is valid in its canonical frames, but is not sound and complete for any first-order definable class of Kripke frames (a monomodal example can then be obtained using simulation results of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Canonical formulas for wk4.Guram Bezhanishvili & Nick Bezhanishvili - 2012 - Review of Symbolic Logic 5 (4):731-762.
    We generalize the theory of canonical formulas for K4, the logic of transitive frames, to wK4, the logic of weakly transitive frames. Our main result establishes that each logic over wK4 is axiomatizable by canonical formulas, thus generalizing Zakharyaschev’s theorem for logics over K4. The key new ingredients include the concepts of transitive and strongly cofinal subframes of weakly transitive spaces. This yields, along with the standard notions of subframe and cofinal subframe logics, the new notions of transitive subframe and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Willem Blok and Modal Logic.W. Rautenberg, M. Zakharyaschev & F. Wolter - 2006 - Studia Logica 83 (1):15-30.
    We present our personal view on W.J. Blok's contribution to modal logic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Pseudomonadic Algebras as Algebraic Models of Doxastic Modal Logic.Nick Bezhanishvili - 2002 - Mathematical Logic Quarterly 48 (4):624-636.
    We generalize the notion of a monadic algebra to that of a pseudomonadic algebra. In the same way as monadic algebras serve as algebraic models of epistemic modal system S5, pseudomonadic algebras serve as algebraic models of doxastic modal system KD45. The main results of the paper are: Characterization of subdirectly irreducible and simple pseudomonadic algebras, as well as Tokarz's proper filter algebras; Ordertopological representation of pseudomonadic algebras; Complete description of the lattice of subvarieties of the variety of pseudomonadic algebras.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Matching Topological and Frame Products of Modal Logics.Philip Kremer - 2016 - Studia Logica 104 (3):487-502.
    The simplest combination of unimodal logics \ into a bimodal logic is their fusion, \, axiomatized by the theorems of \. Shehtman introduced combinations that are not only bimodal, but two-dimensional: he defined 2-d Cartesian products of 1-d Kripke frames, using these Cartesian products to define the frame product \. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalized Shehtman’s idea and introduced the topological product \, using Cartesian products of topological spaces rather than of Kripke frames. Frame products have been (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Deduction Theorem in Congruential Modal Logics.Krzysztof A. Krawczyk - 2023 - Notre Dame Journal of Formal Logic 64 (2):185-196.
    We present an algebraic proof of the theorem stating that there are continuum many axiomatic extensions of global consequence associated with modal system E that do not admit the local deduction detachment theorem. We also prove that all these logics lack the finite frame property and have exactly three proper axiomatic extensions, each of which admits the local deduction detachment theorem.
    Download  
     
    Export citation  
     
    Bookmark  
  • Post complete and 0-axiomatizable modal logics.Fabio Bellissima - 1990 - Annals of Pure and Applied Logic 47 (2):121-144.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What is the upper part of the lattice of bimodal logics?Frank Wolter - 1994 - Studia Logica 53 (2):235 - 241.
    We define an embedding from the lattice of extensions ofT into the lattice of extensions of the bimodal logic with two monomodal operators 1 and 2, whose 2-fragment isS5 and 1-fragment is the logic of a two-element chain. This embedding reflects the fmp, decidability, completenes and compactness. It follows that the lattice of extension of a bimodal logic can be rather complicated even if the monomodal fragments of the logic belong to the upper part of the lattice of monomodal logics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)In Memory of Willem Johannes Blok 1947-2003.Joel Berman, Wieslaw Dziobiak, Don Pigozzi & James Raftery - 2006 - Studia Logica 83 (1-3):5-14.
    Download  
     
    Export citation  
     
    Bookmark  
  • Involutions defined by monadic terms.Renato A. Lewin - 1988 - Studia Logica 47 (4):387 - 389.
    We prove that there are two involutions defined by monadic terms that characterize Monadic Algebras. We further prove that the variety of Monadic Algebras is the smallest variety of Interior Algebras where these involutions give rise to an interpretation from the variety of Bounded Distributive Lattices into it.
    Download  
     
    Export citation  
     
    Bookmark  
  • Canonicity in Power and Modal Logics of Finite Achronal Width.Robert Goldblatt & Ian Hodkinson - 2024 - Review of Symbolic Logic 17 (3):705-735.
    We develop a method for showing that various modal logics that are valid in their countably generated canonical Kripke frames must also be valid in their uncountably generated ones. This is applied to many systems, including the logics of finite width, and a broader class of multimodal logics of ‘finite achronal width’ that are introduced here.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Splitting Logic in NExt.Yutaka Miyazaki - 2007 - Studia Logica 85 (3):381-394.
    It is shown that the normal modal logic of two reflexive points jointed with a symmetric binary relation splits the lattice of normal extensions of the logic KTB. By this fact, it is easily seen that there exists the third largest logic in the class of all normal extensions of KTB.
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal Logics over Lattices.Xiaoyang Wang & Yanjing Wang - forthcoming - Annals of Pure and Applied Logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Some descending chains of incomplete modal logics.Ming Xu - 1991 - Journal of Philosophical Logic 20 (3):265 - 283.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Varieties of pseudo-interior algebras.Barbara Klunder - 2000 - Studia Logica 65 (1):113-136.
    The notion of a pseudo-interior algebra was introduced by Blok and Pigozzi in [BPIV]. We continue here our studies begun in [BK]. As a consequence of the representation theorem for pseudo-interior algebras given in [BK] we prove that the variety of all pseudo-interior algebras is generated by its finite members. This result together with Jónsson's Theorem for congruence distributive varieties provides a useful technique in the study of the lattice of varieties of pseudo-interior algebras.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A splitting logic in NExt(KTB).Yutaka Miyazaki - 2007 - Studia Logica 85 (3):381 - 394.
    It is shown that the normal modal logic of two reflexive points jointed with a symmetric binary relation splits the lattice of normal extensions of the logic KTB. By this fact, it is easily seen that there exists the third largest logic in the class of all normal extensions of KTB.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The structure of the lattice of normal extensions of modal logics with cyclic axioms.Yutaka Miyazaki - 2016 - In Lev Beklemishev, Stéphane Demri & András Máté (eds.), Advances in Modal Logic, Volume 11. CSLI Publications. pp. 489-502.
    Download  
     
    Export citation  
     
    Bookmark