Switch to: References

Add citations

You must login to add citations.
  1. The transitions among classical mechanics, quantum mechanics, and stochastic quantum mechanics.Franklin E. Schroeck - 1982 - Foundations of Physics 12 (9):825-841.
    Various formalisms for recasting quantum mechanics in the framework of classical mechanics on phase space are reviewed and compared. Recent results in stochastic quantum mechanics are shown to avoid the difficulties encountered by the earlier approach of Wigner, as well as to avoid the well-known incompatibilities of relativity and ordinary quantum theory. Specific mappings among the various formalisms are given.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Time-energy uncertainty and relativistic canonical commutation relations in quantum spacetime.Eduard Prugovečki - 1982 - Foundations of Physics 12 (6):555-564.
    It is shown that the time operatorQ 0 appearing in the realization of the RCCR's [Qμ,Pv]=−jhgμv, on Minkowski quantum spacetime is a self adjoint operator on Hilbert space of square integrable functions over Σ m =σ×v m , where σ is a timelike hyperplane. This result leads to time-energy uncertainty relations that match their space-momentum counterparts. The operators Qμ appearing in Born's metric operator in quantum spacetime emerge as internal spacetime operators for exciton states, and the condition that the metric (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Wigner distribution function—50th birthday.R. F. O'Connell - 1983 - Foundations of Physics 13 (1):83-92.
    We discuss the profound influence which the Wigner distribution function has had in many areas of physics during its fifty years of existence.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Galilean-Covariant Clifford Algebras in the Phase-Space Representation.J. D. M. Vianna, M. C. B. Fernandes & A. E. Santana - 2005 - Foundations of Physics 35 (1):109-129.
    We apply the Galilean covariant formulation of quantum dynamics to derive the phase-space representation of the Pauli–Schrödinger equation for the density matrix of spin-1/2 particles in the presence of an electromagnetic field. The Liouville operator for the particle with spin follows from using the Wigner–Moyal transformation and a suitable Clifford algebra constructed on the phase space of a (4 + 1)-dimensional space–time with Galilean geometry. Connections with the algebraic formalism of thermofield dynamics are also investigated.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum mechanics without wave functions.Lipo Wang & R. F. O'Connell - 1988 - Foundations of Physics 18 (10):1023-1033.
    The phase space formulation of quantum mechanics is based on the use of quasidistribution functions. This technique was pioneered by Wigner, whose distribution function is perhaps the most commonly used of the large variety that we find discussed in the literature. Here we address the question of how one can obtain distribution functions and hence do quantum mechanics without the use of wave functions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation