Switch to: References

Add citations

You must login to add citations.
  1. How scientific models can explain.Alisa Bokulich - 2011 - Synthese 180 (1):33 - 45.
    Scientific models invariably involve some degree of idealization, abstraction, or nationalization of their target system. Nonetheless, I argue that there are circumstances under which such false models can offer genuine scientific explanations. After reviewing three different proposals in the literature for how models can explain, I shall introduce a more general account of what I call model explanations, which specify the conditions under which models can be counted as explanatory. I shall illustrate this new framework by applying it to the (...)
    Download  
     
    Export citation  
     
    Bookmark   201 citations  
  • Structural Realism.James Ladyman - 2012 - In Ed Zalta, Stanford Encyclopedia of Philosophy. Stanford, CA: Stanford Encyclopedia of Philosophy.
    Structural realism is considered by many realists and antirealists alike as the most defensible form of scientific realism. There are now many forms of structural realism and an extensive literature about them. There are interesting connections with debates in metaphysics, philosophy of physics and philosophy of mathematics. This entry is intended to be a comprehensive survey of the field.
    Download  
     
    Export citation  
     
    Bookmark   138 citations  
  • Fiction As a Vehicle for Truth: Moving Beyond the Ontic Conception.Alisa Bokulich - 2016 - The Monist 99 (3):260-279.
    Despite widespread evidence that fictional models play an explanatory role in science, resistance remains to the idea that fictions can explain. A central source of this resistance is a particular view about what explanations are, namely, the ontic conception of explanation. According to the ontic conception, explanations just are the concrete entities in the world. I argue this conception is ultimately incoherent and that even a weaker version of the ontic conception fails. Fictional models can succeed in offering genuine explanations (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Explanatory Abstractions.Lina Jansson & Juha Saatsi - 2019 - British Journal for the Philosophy of Science 70 (3):817–844.
    A number of philosophers have recently suggested that some abstract, plausibly non-causal and/or mathematical, explanations explain in a way that is radically dif- ferent from the way causal explanation explain. Namely, while causal explanations explain by providing information about causal dependence, allegedly some abstract explanations explain in a way tied to the independence of the explanandum from the microdetails, or causal laws, for example. We oppose this recent trend to regard abstractions as explanatory in some sui generis way, and argue (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Inter-theory Relations in Quantum Gravity: Correspondence, Reduction and Emergence.Karen Crowther - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:74-85.
    Relationships between current theories, and relationships between current theories and the sought theory of quantum gravity (QG), play an essential role in motivating the need for QG, aiding the search for QG, and defining what would count as QG. Correspondence is the broad class of inter-theory relationships intended to demonstrate the necessary compatibility of two theories whose domains of validity overlap, in the overlap regions. The variety of roles that correspondence plays in the search for QG are illustrated, using examples (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Can classical structures explain quantum phenomena?Alisa Bokulich - 2008 - British Journal for the Philosophy of Science 59 (2):217-235.
    In semiclassical mechanics one finds explanations of quantum phenomena that appeal to classical structures. These explanations are prima facie problematic insofar as the classical structures they appeal to do not exist. Here I defend the view that fictional structures can be genuinely explanatory by introducing a model-based account of scientific explanation. Applying this framework to the semiclassical phenomenon of wavefunction scarring, I argue that not only can the fictional classical trajectories explain certain aspects of this quantum phenomenon, but also that (...)
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Ontic structural realism as a metaphysics of objects.Michael Esfeld & Vincent Lam - 2011 - In Alisa Bokulich & Peter Bokulich, Scientific Structuralism. Springer Science+Business Media. pp. 143-159.
    The paper spells out five different accounts of the relationship between objects and relations three of which are versions of ontic structural realism. We argue that the distinction between objects and properties, including relations, is merely a conceptual one by contrast to an ontological one: properties, including relations, are modes, that is the concrete, particular ways in which objects exist. We then set out moderate OSR as the view according to which irreducible relations are central ways in which the fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Models and Explanation.Alisa Bokulich - 2017 - In Magnani Lorenzo & Bertolotti Tommaso Wayne, Springer Handbook of Model-Based Science. Springer. pp. 103-118.
    Detailed examinations of scientific practice have revealed that the use of idealized models in the sciences is pervasive. These models play a central role in not only the investigation and prediction of phenomena, but in their received scientific explanations as well. This has led philosophers of science to begin revising the traditional philosophical accounts of scientific explanation in order to make sense of this practice. These new model-based accounts of scientific explanation, however, raise a number of key questions: Can the (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • In defence of ontic structural realism.Steven French & James Ladyman - 2011 - In Alisa Bokulich & Peter Bokulich, Scientific Structuralism. Springer Science+Business Media. pp. 25-42.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Idealizations and Understanding: Much Ado About Nothing?Emily Sullivan & Kareem Khalifa - 2019 - Australasian Journal of Philosophy 97 (4):673-689.
    Because idealizations frequently advance scientific understanding, many claim that falsehoods play an epistemic role. In this paper, we argue that these positions greatly overstate idealiza...
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The puzzle of model-based explanation.N. Emrah Aydinonat - 2024 - In Tarja Knuuttila, Natalia Carrillo & Rami Koskinen, The Routledge Handbook of Philosophy of Scientific Modeling. New York, NY: Routledge.
    Among the many functions of models, explanation is central to the functioning and aims of science. However, the discussions surrounding modeling and explanation in philosophy have largely remained separate from each other. This chapter seeks to bridge the gap by focusing on the puzzle of model-based explanation, asking how different philosophical accounts answer the following question: if idealizations and fictions introduce falsehoods into models, how can idealized and fictional models provide true explanations? The chapter provides a selective and critical overview (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scientific fictions as rules of inference.Mauricio Suárez - 2008 - In Mauricio Suárez, Fictions in Science: Philosophical Essays on Modeling and Idealization. New York: Routledge. pp. 158--178.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • (1 other version)What is theoretical progress of science?Juha Saatsi - 2019 - Synthese 196 (2):611-631.
    The epistemic conception of scientific progress equates progress with accumulation of scientific knowledge. I argue that the epistemic conception fails to fully capture scientific progress: theoretical progress, in particular, can transcend scientific knowledge in important ways. Sometimes theoretical progress can be a matter of new theories ‘latching better onto unobservable reality’ in a way that need not be a matter of new knowledge. Recognising this further dimension of theoretical progress is particularly significant for understanding scientific realism, since realism is naturally (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Searching for Noncausal Explanations in a Sea of Causes.Alisa Bokulich - 2018 - In Alexander Reutlinger & Juha Saatsi, Explanation Beyond Causation: Philosophical Perspectives on Non-Causal Explanations. Oxford, United Kingdom: Oxford University Press.
    In the spirit of explanatory pluralism, this chapter argues that causal and noncausal explanations of a phenomenon are compatible, each being useful for bringing out different sorts of insights. After reviewing a model-based account of scientific explanation, which can accommodate causal and noncausal explanations alike, an important core conception of noncausal explanation is identified. This noncausal form of model-based explanation is illustrated using the example of how Earth scientists in a subfield known as aeolian geomorphology are explaining the formation of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)What is the Point of Reduction in Science?Karen Crowther - 2020 - Erkenntnis 85 (6):1437-1460.
    The numerous and diverse roles of theory reduction in science have been insufficiently explored in the philosophy literature on reduction. Part of the reason for this has been a lack of attention paid to reduction2 (successional reduction)—although I here argue that this sense of reduction is closer to reduction1 (explanatory reduction) than is commonly recognised, and I use an account of reduction that is neutral between the two. This paper draws attention to the utility—and incredible versatility—of theory reduction. A non-exhaustive (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Understanding realism.Collin Rice - 2019 - Synthese 198 (5):4097-4121.
    Catherine Elgin has recently argued that a nonfactive conception of understanding is required to accommodate the epistemic successes of science that make essential use of idealizations and models. In this paper, I argue that the fact that our best scientific models and theories are pervasively inaccurate representations can be made compatible with a more nuanced form of scientific realism that I call Understanding Realism. According to this view, science aims at (and often achieves) factive scientific understanding of natural phenomena. I (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)What is theoretical progress of science?Juha Saatsi - 2016 - Synthese:1-21.
    The epistemic conception of scientific progress equates progress with accumulation of scientific knowledge. I argue that the epistemic conception fails to fully capture scientific progress: theoretical progress, in particular, can transcend scientific knowledge in important ways. Sometimes theoretical progress can be a matter of new theories ‘latching better onto unobservable reality’ in a way that need not be a matter of new knowledge. Recognising this further dimension of theoretical progress is particularly significant for understanding scientific realism, since realism is naturally (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Explaining Universality: Infinite Limit Systems in the Renormalization Group Method.Jingyi Wu - 2021 - Synthese (5-6):14897-14930.
    I analyze the role of infinite idealizations used in the renormalization group (RG hereafter) method in explaining universality across microscopically different physical systems in critical phenomena. I argue that despite the reference to infinite limit systems such as systems with infinite correlation lengths during the RG process, the key to explaining universality in critical phenomena need not involve infinite limit systems. I develop my argument by introducing what I regard as the explanatorily relevant property in RG explanations: linearization* property; I (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Infinite idealizations in physics.Elay Shech - 2018 - Philosophy Compass 13 (9):e12514.
    In this essay, I provide an overview of the debate on infinite and essential idealizations in physics. I will first present two ostensible examples: phase transitions and the Aharonov– Bohm effect. Then, I will describe the literature on the topic as a debate between two positions: Essentialists claim that idealizations are essential or indispensable for scientific accounts of certain physical phenomena, while dispensabilists maintain that idealizations are dispensable from mature scientific theory. I will also identify some attempts at finding a (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Structural realism: Continuity and its limits.Ioannis Votsis - 2011 - In Alisa Bokulich & Peter Bokulich, Scientific Structuralism. Springer Science+Business Media. pp. 105--117.
    Structural realists of nearly all stripes endorse the structural continuity claim. Roughly speaking, this is the claim that the structure of successful scientific theories survives theory change because it has latched on to the structure of the world. In this paper I elaborate, elucidate and modify the structural continuity claim and its associated argument. I do so without presupposing a particular conception of structure that favours this or that kind of structural realism. Instead I focus on how structural realists can (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The strong emergence of molecular structure.Vanessa A. Seifert - 2020 - European Journal for Philosophy of Science 10 (3):1-25.
    One of the most plausible and widely discussed examples of strong emergence is molecular structure. The only detailed account of it, which has been very influential, is due to Robin Hendry and is formulated in terms of downward causation. This paper explains Hendry’s account of the strong emergence of molecular structure and argues that it is coherent only if one assumes a diachronic reflexive notion of downward causation. However, in the context of this notion of downward causation, the strong emergence (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Maxwell, Helmholtz, and the unreasonable effectiveness of the method of physical analogy.Alisa Bokulich - 2015 - Studies in History and Philosophy of Science Part A 50:28-37.
    The fact that the same equations or mathematical models reappear in the descriptions of what are otherwise disparate physical systems can be seen as yet another manifestation of Wigner's “unreasonable effectiveness of mathematics.” James Clerk Maxwell famously exploited such formal similarities in what he called the “method of physical analogy.” Both Maxwell and Hermann von Helmholtz appealed to the physical analogies between electromagnetism and hydrodynamics in their development of these theories. I argue that a closer historical examination of the different (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Infinite idealizations in science: an introduction.Samuel C. Fletcher, Patricia Palacios, Laura Ruetsche & Elay Shech - 2019 - Synthese 196 (5):1657-1669.
    We offer a framework for organizing the literature regarding the debates revolving around infinite idealizations in science, and a short summary of the contributions to this special issue.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Unity of Science.Jordi Cat - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • How dimensional analysis can explain.Mark Pexton - 2014 - Synthese 191 (10):2333-2351.
    Dimensional analysis can offer us explanations by allowing us to answer What-if–things-had-been-different? questions rather than in virtue of, say, unifying diverse phenomena, important as that is. Additionally, it is argued that dimensional analysis is a form of modelling as it involves several of the aspects crucial in modelling, such as misrepresenting aspects of a target system. By highlighting the continuities dimensional analysis has with forms of modelling we are able to describe more precisely what makes dimensional analysis explanatory and understand (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Two Approaches to Fractional Statistics in the Quantum Hall Effect: Idealizations and the Curious Case of the Anyon.Elay Shech - 2015 - Foundations of Physics 45 (9):1063-1100.
    This paper looks at the nature of idealizations and representational structures appealed to in the context of the fractional quantum Hall effect, specifically, with respect to the emergence of anyons and fractional statistics. Drawing on an analogy with the Aharonov–Bohm effect, it is suggested that the standard approach to the effects— the topological approach to fractional statistics—relies essentially on problematic idealizations that need to be revised in order for the theory to be explanatory. An alternative geometric approach is outlined and (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • On the Conceptuality Interpretation of Quantum and Relativity Theories.Diederik Aerts, Massimiliano Sassoli de Bianchi, Sandro Sozzo & Tomas Veloz - 2020 - Foundations of Science 25 (1):5-54.
    How can we explain the strange behavior of quantum and relativistic entities? Why do they behave in ways that defy our intuition about how physical entities should behave, considering our ordinary experience of the world around us? In this article, we address these questions by showing that the comportment of quantum and relativistic entities is not that strange after all, if we only consider what their nature might possibly be: not an objectual one, but a conceptual one. This not in (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)What is the point of reduction in science?Karen Crowther - 2018 - Erkenntnis:1-24.
    The numerous and diverse roles of theory reduction in science have been insufficiently explored in the philosophy literature on reduction. Part of the reason for this has been a lack of attention paid to reduction2 (successional reduction)---although I here argue that this sense of reduction is closer to reduction1 (explanatory reduction) than is commonly recognised, and I use an account of reduction that is neutral between the two. This paper draws attention to the utility---and incredible versatility---of theory reduction. A non-exhaustive (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Is Bohr’s Correspondence Principle just Hankel’s Principle of Permanence?Iulian D. Toader - 2024 - Studies in History and Philosophy of Science 103 (C):137-145.
    The paper argues that Bohr understood his correspondence principle, or at least an aspect of it expressed by the notion of rational generalization, as grounded in Hankel's principle of permanence.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Taming the tyranny of scales: models and scale in the geosciences.Alisa Bokulich - 2021 - Synthese 199 (5-6):14167-14199.
    While the predominant focus of the philosophical literature on scientific modeling has been on single-scale models, most systems in nature exhibit complex multiscale behavior, requiring new modeling methods. This challenge of modeling phenomena across a vast range of spatial and temporal scales has been called the tyranny of scales problem. Drawing on research in the geosciences, I synthesize and analyze a number of strategies for taming this tyranny in the context of conceptual, physical, and mathematical modeling. This includes several strategies (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Idealizations, essential self-adjointness, and minimal model explanation in the Aharonov–Bohm effect.Shech Elay - 2018 - Synthese 195 (11):4839-4863.
    Two approaches to understanding the idealizations that arise in the Aharonov–Bohm effect are presented. It is argued that a common topological approach, which takes the non-simply connected electron configuration space to be an essential element in the explanation and understanding of the effect, is flawed. An alternative approach is outlined. Consequently, it is shown that the existence and uniqueness of self-adjoint extensions of symmetric operators in quantum mechanics have important implications for philosophical issues. Also, the alleged indispensable explanatory role of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Do fictions explain?James Nguyen - 2020 - Synthese 199 (1-2):3219-3244.
    I argue that fictional models, construed as models that misrepresent certain ontological aspects of their target systems, can nevertheless explain why the latter exhibit certain behaviour. They can do this by accurately representing whatever it is that that behaviour counterfactually depends on. However, we should be sufficiently sensitive to different explanatory questions, i.e., ‘why does certain behaviour occur?’ versus ‘why does the counterfactual dependency invoked to answer that question actually hold?’. With this distinction in mind, I argue that whilst fictional (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Philosophical Issues Concerning Phase Transitions and Anyons: Emergence, Reduction, and Explanatory Fictions.Elay Shech - 2019 - Erkenntnis 84 (3):585-615.
    Various claims regarding intertheoretic reduction, weak and strong notions of emergence, and explanatory fictions have been made in the context of first-order thermodynamic phase transitions. By appealing to John Norton’s recent distinction between approximation and idealization, I argue that the case study of anyons and fractional statistics, which has received little attention in the philosophy of science literature, is more hospitable to such claims. In doing so, I also identify three novel roles that explanatory fictions fulfill in science. Furthermore, I (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Scientific explanation and scientific structuralism.Mauro Dorato & Laura Felline - 2011 - In Alisa Bokulich & Peter Bokulich, Scientific Structuralism, Boston Studies in the Philosophy of science. Springer. pp. 161--176.
    In this paper we argue that quantum mechanics provides a genuine kind of structural explanations of quantum phenomena. Since structural explanations only rely on the formal properties of the theory, they have the advantage of being independent of interpretative questions. As such, they can be used to claim that, even in the current absence of one agreed-upon interpretation, quantum mechanics is capable of providing satisfactory explanations of physical phenomena. While our proposal clearly cannot be taken to solve all interpretive issues (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Structural Realism: a neo-Kantian perspective.Michela Massimi - 2011 - In Alisa Bokulich & Peter Bokulich, Scientific Structuralism. Springer Science+Business Media. pp. 1--23.
    Structural realism was born in the attempt to reach a compromise between a realist argument and an antirealist one, namely the ‘no miracle’ ­argument and the ‘pessimistic meta-induction’, respectively. According to the ‘no miracle’ argument, scientific realism is the only philosophy that does not make the success of science a miracle. The only way of explaining why science is so ­successful in making predictions that most of the time turn out to be verified, is to believe that theoretical terms refer, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Structural empiricism, again.Ot’Avio Bueno - 2011 - In Alisa Bokulich & Peter Bokulich, Scientific Structuralism. Springer Science+Business Media. pp. 81--103.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Neural representationalism, the Hard Problem of Content and vitiated verdicts. A reply to Hutto & Myin.Matteo Colombo - 2014 - Phenomenology and the Cognitive Sciences 13 (2):257-274.
    Colombo’s (Phenomenology and the Cognitive Sciences, 2013) plea for neural representationalism is the focus of a recent contribution to Phenomenology and Cognitive Science by Daniel D. Hutto and Erik Myin. In that paper, Hutto and Myin have tried to show that my arguments fail badly. Here, I want to respond to their critique clarifying the type of neural representationalism put forward in my (Phenomenology and the Cognitive Sciences, 2013) piece, and to take the opportunity to make a few remarks of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • “Formal” Versus “Empirical” Approaches to Quantum–Classical Reduction.Joshua Rosaler - 2015 - Topoi 34 (2):325-338.
    I distinguish two types of reduction within the context of quantum-classical relations, which I designate “formal” and “empirical”. Formal reduction holds or fails to hold solely by virtue of the mathematical relationship between two theories; it is therefore a two-place, a priori relation between theories. Empirical reduction requires one theory to encompass the range of physical behaviors that are well-modeled in another theory; in a certain sense, it is a three-place, a posteriori relation connecting the theories and the domain of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On structural accounts of model-explanations.Martin King - 2016 - Synthese 193 (9):2761-2778.
    The focus in the literature on scientific explanation has shifted in recent years towards model-based approaches. In recent work, Alisa Bokulich has argued that idealization has a central role to play in explanation. Bokulich claims that certain highly-idealized, structural models can be explanatory, even though they are not considered explanatory by causal, mechanistic, or covering law accounts of explanation. This paper focuses on Bokulich’s account in order to make the more general claim that there are problems with maintaining that a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Infinitesimal idealization, easy road nominalism, and fractional quantum statistics.Elay Shech - 2019 - Synthese 196 (5):1963-1990.
    It has been recently debated whether there exists a so-called “easy road” to nominalism. In this essay, I attempt to fill a lacuna in the debate by making a connection with the literature on infinite and infinitesimal idealization in science through an example from mathematical physics that has been largely ignored by philosophers. Specifically, by appealing to John Norton’s distinction between idealization and approximation, I argue that the phenomena of fractional quantum statistics bears negatively on Mary Leng’s proposed path to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Explanatory fictions—for real?Samuel Schindler - 2014 - Synthese 191 (8):1741-1755.
    In this article I assess Alisa Bokulich’s idea that explanatory model fictions can be genuinely explanatory. I draw attention to a tension in her account between the claim that model fictions are explanatorily autonomous, and the demand that model fictions be justified in order for them to be genuinely explanatory. I also explore the consequences that arise from Bokulich’s use of Woodward’s account of counterfactual explanation and her abandonment of Woodward’s notion of an intervention. As it stands, Bokulich’s account must (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Guiding principles in physics.Enno Fischer - 2024 - European Journal for Philosophy of Science 14 (4):1-20.
    Guiding principles are central to theory development in physics, especially when there is only limited empirical input available. Here I propose an approach to such principles looking at their heuristic role. I suggest a distinction between two modes of employing scientific principles. Principles of nature make descriptive claims about objects of inquiry, and principles of epistemic action give directives for further research. If a principle is employed as a guiding principle, then its use integrates both modes of employment: guiding principles (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Models, structures, and the explanatory role of mathematics in empirical science.Mary Leng - 2021 - Synthese 199 (3-4):10415-10440.
    Are there genuine mathematical explanations of physical phenomena, and if so, how can mathematical theories, which are typically thought to concern abstract mathematical objects, explain contingent empirical matters? The answer, I argue, is in seeing an important range of mathematical explanations as structural explanations, where structural explanations explain a phenomenon by showing it to have been an inevitable consequence of the structural features instantiated in the physical system under consideration. Such explanations are best cast as deductive arguments which, by virtue (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Model Landscapes in the Higgs Sector.Arianna Borrelli & Michael Stöltzner - 2013 - In Vassilios Karakostas & Dennis Dieks, EPSA11 Perspectives and Foundational Problems in Philosophy of Science. Cham: Springer. pp. 241--252.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Evidence, Argument and Prediction.Nancy Cartwright - 2013 - In Vassilios Karakostas & Dennis Dieks, EPSA11 Perspectives and Foundational Problems in Philosophy of Science. Cham: Springer. pp. 3--17.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Chaos.Robert Bishop - 2015 - Stanford Encyclopedia of Philosophy.
    The big news about chaos is supposed to be that the smallest of changes in a system can result in very large differences in that system's behavior. The so-called butterfly effect has become one of the most popular images of chaos. The idea is that the flapping of a butterfly's wings in Argentina could cause a tornado in Texas three weeks later. By contrast, in an identical copy of the world sans the Argentinian butterfly, no such storm would have arisen (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Getting to Know the World Scientifically: An Objective View.Paul Needham - 2020 - Cham, Schweiz: Springer.
    This undergraduate textbook introduces some fundamental issues in philosophy of science for students of philosophy and science students. The book is divided into two parts. Part 1 deals with knowledge and values. Chap. 1 presents the classical conception of knowledge as initiated by the ancient Greeks and elaborated during the development of science, introducing the central concepts of truth, belief and justification. Aspects of the quest for objectivity are taken up in the following two chapters. Moral issues are broached in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Multi-model approaches to phylogenetics: Implications for idealization.Aja Watkins - 2021 - Studies in History and Philosophy of Science Part A 90 (C):285-297.
    Phylogenetic models traditionally represent the history of life as having a strictly-branching tree structure. However, it is becoming increasingly clear that the history of life is often not strictly-branching; lateral gene transfer, endosymbiosis, and hybridization, for example, can all produce lateral branching events. There is thus motivation to allow phylogenetic models to have a reticulate structure. One proposal involves the reconciliation of genealogical discordance. Briefly, this method uses patterns of disagreement – discordance – between trees of different genes to add (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Explaining the laser’s light: classical versus quantum electrodynamics in the 1960s.Joan Lisa Bromberg - 2016 - Archive for History of Exact Sciences 70 (3):243-266.
    The laser, first operated in 1960, produced light with coherence properties that demanded explanation. While some attempted a treatment within the framework of classical coherence theory, others insisted that only quantum electrodynamics could give adequate insight and generality. The result was a sharp and rather bitter controversy, conducted over the physics and mathematics that were being deployed, but also over the criteria for doing good science. Three physicists were at the center of this dispute, Emil Wolf, Max Born’s collaborator on (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Philosophy of the Physical Sciences.Chris Smeenk & Hoefer Carl - 2014 - In Paul Humphreys, The Oxford Handbook of Philosophy of Science. New York, NY, USA: Oxford University Press.
    The authors survey some debates about the nature and structure of physical theories and about the connections between our physical theories and naturalized metaphysics. The discussion is organized around an “ideal view” of physical theories and criticisms that can be raised against it. This view includes controversial commitments regarding the best analysis of physical modalities and intertheory relations. The authors consider the case in favor of taking laws as the primary modal notion, discussing objections related to alleged violations of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations