Switch to: References

Add citations

You must login to add citations.
  1. How did Frege fall into the contradiction?Peter M. Sullivan - 2007 - Ratio 20 (1):91–107.
    Quine made it conventional to portray the contradiction that destroyed Frege’s logicism as some kind of act of God, a thunderbolt that descended from a clear blue sky. This portrayal suited the moral Quine was antecedently inclined to draw, that intuition is bankrupt, and that reliance on it must therefore be replaced by a pragmatic methodology. But the portrayal is grossly misleading, and Quine’s moral simply false. In the person of others – Cantor, Dedekind, and Zermelo – intuition was working (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Generality, Extensibility, and Paradox.J. P. Studd - 2017 - Proceedings of the Aristotelian Society 117 (1):81-101.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Consistency, Models, and Soundness.Matthias Schirn - 2010 - Axiomathes 20 (2):153-207.
    This essay consists of two parts. In the first part, I focus my attention on the remarks that Frege makes on consistency when he sets about criticizing the method of creating new numbers through definition or abstraction. This gives me the opportunity to comment also a little on H. Hankel, J. Thomae—Frege’s main targets when he comes to criticize “formal theories of arithmetic” in Die Grundlagen der Arithmetik (1884) and the second volume of Grundgesetze der Arithmetik (1903)—G. Cantor, L. E. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Grundgesetze der Arithmetik I §§29‒32.Richard G. Heck - 1997 - Notre Dame Journal of Formal Logic 38 (3):437-474.
    Frege's intention in section 31 of Grundgesetze is to show that every well-formed expression in his formal system denotes. But it has been obscure why he wants to do this and how he intends to do it. It is argued here that, in large part, Frege's purpose is to show that the smooth breathing, from which names of value-ranges are formed, denotes; that his proof that his other primitive expressions denote is sound and anticipates Tarski's theory of truth; and that (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Reference and Paradox.Claire Ortiz Hill - 2004 - Synthese 138 (2):207-232.
    Evidence is drawn together to connect sources of inconsistency that Frege discerned in his foundations for arithmetic with the origins of the paradox derived by Russell in "Basic Laws" I and then with antinomies, paradoxes, contradictions, riddles associated with modal and intensional logics. Examined are: Frege's efforts to grasp logical objects; the philosophical arguments that compelled Russell to adopt a description theory of names and a eliminative theory of descriptions; the resurfacing of issues surrounding reference, descriptions, identity, substitutivity, paradox in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Speaking with Shadows: A Study of Neo‐Logicism.Fraser MacBride - 2003 - British Journal for the Philosophy of Science 54 (1):103-163.
    According to the species of neo-logicism advanced by Hale and Wright, mathematical knowledge is essentially logical knowledge. Their view is found to be best understood as a set of related though independent theses: (1) neo-fregeanism-a general conception of the relation between language and reality; (2) the method of abstraction-a particular method for introducing concepts into language; (3) the scope of logic-second-order logic is logic. The criticisms of Boolos, Dummett, Field and Quine (amongst others) of these theses are explicated and assessed. (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Rumfitt on the logic of set theory.Øystein Linnebo - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (7):826-841.
    ABSTRACTAccording to a famous argument by Dummett, the concept of set is indefinitely extensible, and the logic appropriate for reasoning about the instances of any such concept is intuitionistic, not classical. But Dummett's argument is widely regarded as obscure. This note explains how the final chapter of Rumfitt's important new book advances our understanding of Dummett's argument, but it also points out some problems and unanswered questions. Finally, Rumfitt's reconstruction of Dummett's argument is contrasted with my own preferred alternative.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Price of Mathematical Scepticism.Paul Blain Levy - 2022 - Philosophia Mathematica 30 (3):283-305.
    This paper argues that, insofar as we doubt the bivalence of the Continuum Hypothesis or the truth of the Axiom of Choice, we should also doubt the consistency of third-order arithmetic, both the classical and intuitionistic versions. -/- Underlying this argument is the following philosophical view. Mathematical belief springs from certain intuitions, each of which can be either accepted or doubted in its entirety, but not half-accepted. Therefore, our beliefs about reality, bivalence, choice and consistency should all be aligned.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Metametaphysics of Neo-Fregeanism.Matti Eklund - 2020 - In Ricki Bliss & James Miller (eds.), The Routledge Handbook of Metametaphysics. New York, NY: Routledge.
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege’s Cardinals as Concept-correlates.Gregory Landini - 2006 - Erkenntnis 65 (2):207-243.
    In his "Grundgesetze", Frege hints that prior to his theory that cardinal numbers are objects he had an "almost completed" manuscript on cardinals. Taking this early theory to have been an account of cardinals as second-level functions, this paper works out the significance of the fact that Frege's cardinal numbers is a theory of concept-correlates. Frege held that, where n > 2, there is a one—one correlation between each n-level function and an n—1 level function, and a one—one correlation between (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Frege's Cardinals Do Not Always Obey Hume's Principle.Gregory Landini - 2017 - History and Philosophy of Logic 38 (2):127-153.
    Hume's Principle, dear to neo-Logicists, maintains that equinumerosity is both necessary and sufficient for sameness of cardinal number. All the same, Whitehead demonstrated in Principia Mathematica's logic of relations that Cantor's power-class theorem entails that Hume's Principle admits of exceptions. Of course, Hume's Principle concerns cardinals and in Principia's ‘no-classes’ theory cardinals are not objects in Frege's sense. But this paper shows that the result applies as well to the theory of cardinal numbers as objects set out in Frege's Grundgesetze. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Essential Laws. On Ideal Objects and their Properties in Early Phenomenology.Guillaume Fréchette - 2015 - In Bruno Leclercq, Sébastien Richard & Denis Seron (eds.), Objects and Pseudo-Objects Ontological Deserts and Jungles from Brentano to Carnap. Boston: de Gruyter. pp. 143-166.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bad company objection to Joongol Kim’s adverbial theory of numbers.Namjoong Kim - 2019 - Synthese 196 (8):3389-3407.
    Kim :1099–1112, 2013) defends a logicist theory of numbers. According to him, numbers are adverbial entities, similar to those denoted by “frequently” and “at 100 mph”. He even introduces new adverbs for numbers: “1-wise”, “2-wise”, and so on. For example, “Fs exist 2-wise” means that there are two Fs. Kim claims that, because we can derive Dedekind–Peano axioms from his definition of numbers as adverbial entities, it is a new form of logicism. In this paper, I will, however, argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On a Consistent Subsystem of Frege's Grundgesetze.John P. Burgess - 1998 - Notre Dame Journal of Formal Logic 39 (2):274-278.
    Parsons has given a (nonconstructive) proof that the first-order fragment of the system of Frege's Grundgesetze is consistent. Here a constructive proof of the same result is presented.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Maximally Consistent Sets of Instances of Naive Comprehension.Luca Incurvati & Julien Murzi - 2017 - Mind 126 (502).
    Paul Horwich (1990) once suggested restricting the T-Schema to the maximally consistent set of its instances. But Vann McGee (1992) proved that there are multiple incompatible such sets, none of which, given minimal assumptions, is recursively axiomatizable. The analogous view for set theory---that Naïve Comprehension should be restricted according to consistency maxims---has recently been defended by Laurence Goldstein (2006; 2013). It can be traced back to W.V.O. Quine(1951), who held that Naïve Comprehension embodies the only really intuitive conception of set (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Fundamental Differences between Dependent and Independent Meanings.Claire Ortiz Hill - 2010 - Axiomathes 20 (2-3):313-332.
    In “Function and Concept” and “On Concept and Object”, Frege argued that certain differences between dependent and independent meanings were inviolable and “founded deep in the nature of things” but, in those articles, he was not explicit about the actual consequences of violating such differences. However, since by creating a law that permitted one to pass from a concept to its extension, he himself mixed dependent and independent meanings, we are in a position to study some of the actual consequences (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Consistency of predicative fragments of frege’s grundgesetze der arithmetik.Richard G. Heck - 1996 - History and Philosophy of Logic 17 (1-2):209-220.
    As is well-known, the formal system in which Frege works in his Grundgesetze der Arithmetik is formally inconsistent, Russell’s Paradox being derivable in it.This system is, except for minor differ...
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Pluralism in Mathematics: A New Position in Philosophy of Mathematics.Michèle Friend - 2013 - Dordrecht, Netherland: Springer.
    The pluralist sheds the more traditional ideas of truth and ontology. This is dangerous, because it threatens instability of the theory. To lend stability to his philosophy, the pluralist trades truth and ontology for rigour and other ‘fixtures’. Fixtures are the steady goal posts. They are the parts of a theory that stay fixed across a pair of theories, and allow us to make translations and comparisons. They can ultimately be moved, but we tend to keep them fixed temporarily. Apart (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Frege and the Logic of Sense and Reference.Kevin C. Klement - 2001 - New York: Routledge.
    This book aims to develop certain aspects of Gottlob Frege’s theory of meaning, especially those relevant to intensional logic. It offers a new interpretation of the nature of senses, and attempts to devise a logical calculus for the theory of sense and reference that captures as closely as possible the views of the historical Frege. (The approach is contrasted with the less historically-minded Logic of Sense and Denotation of Alonzo Church.) Comparisons of Frege’s theory with those of Russell and others (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Frege, Boolos, and logical objects.David J. Anderson & Edward N. Zalta - 2004 - Journal of Philosophical Logic 33 (1):1-26.
    In this paper, the authors discuss Frege's theory of "logical objects" and the recent attempts to rehabilitate it. We show that the 'eta' relation George Boolos deployed on Frege's behalf is similar, if not identical, to the encoding mode of predication that underlies the theory of abstract objects. Whereas Boolos accepted unrestricted Comprehension for Properties and used the 'eta' relation to assert the existence of logical objects under certain highly restricted conditions, the theory of abstract objects uses unrestricted Comprehension for (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Taking Stock: Hale, Heck, and Wright on Neo-Logicism and Higher-Order Logic.Crispin Wright - 2021 - Philosophia Mathematica 29 (3): 392--416.
    ABSTRACT Four philosophical concerns about higher-order logic in general and the specific demands placed on it by the neo-logicist project are distinguished. The paper critically reviews recent responses to these concerns by, respectively, the late Bob Hale, Richard Kimberly Heck, and myself. It is argued that these score some successes. The main aim of the paper, however, is to argue that the most serious objection to the applications of higher-order logic required by the neo-logicist project has not been properly understood. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Necessarily Maybe. Quantifiers, Modality and Vagueness.Alessandro Torza - 2015 - In Quantifiers, Quantifiers, and Quantifiers. Themes in Logic, Metaphysics, and Language. (Synthese Library vol. 373). Springer. pp. 367-387.
    Languages involving modalities and languages involving vagueness have each been thoroughly studied. On the other hand, virtually nothing has been said about the interaction of modality and vagueness. This paper aims to start filling that gap. Section 1 is a discussion of various possible sources of vague modality. Section 2 puts forward a model theory for a quantified language with operators for modality and vagueness. The model theory is followed by a discussion of the resulting logic. In Section 3, the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantifiers and Quantification.Gabriel Uzquiano - 2014 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Russell's paradox in consistent fragments of Frege's grundgesetze der arithmetik.Kai F. Wehmeier - 2004 - In Godehard Link (ed.), One Hundred Years of Russell's Paradox: Mathematics, Logic, Philosophy. Berlin and New York: De Gruyter.
    We provide an overview of consistent fragments of the theory of Frege’s Grundgesetze der Arithmetik that arise by restricting the second-order comprehension schema. We discuss how such theories avoid inconsistency and show how the reasoning underlying Russell’s paradox can be put to use in an investigation of these fragments.
    Download  
     
    Export citation  
     
    Bookmark   4 citations