Switch to: References

Add citations

You must login to add citations.
  1. Against Fregean Quantification.Bryan Pickel & Brian Rabern - 2023 - Ergo: An Open Access Journal of Philosophy 9 (37):971-1007.
    There are two dominant approaches to quantification: the Fregean and the Tarskian. While the Tarskian approach is standard and familiar, deep conceptual objections have been pressed against its employment of variables as genuine syntactic and semantic units. Because they do not explicitly rely on variables, Fregean approaches are held to avoid these worries. The apparent result is that the Fregean can deliver something that the Tarskian is unable to, namely a compositional semantic treatment of quantification centered on truth and reference. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Formal Arithmetic Before Grundgesetze.Richard Kimberly Heck - 2019 - In Philip A. Ebert & Marcus Rossberg (eds.), Essays on Frege's Basic Laws of Arithmetic. Oxford: Oxford University Press. pp. 497-537.
    A speculative investigation of how Frege's logical views change between Begriffsschrift and Grundgesetze and how this might have affected the formal development of logicism.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Frege on Referentiality and Julius Caesar in Grundgesetze Section 10.Bruno Bentzen - 2019 - Notre Dame Journal of Formal Logic 60 (4):617-637.
    This paper aims to answer the question of whether or not Frege's solution limited to value-ranges and truth-values proposed to resolve the "problem of indeterminacy of reference" in section 10 of Grundgesetze is a violation of his principle of complete determination, which states that a predicate must be defined to apply for all objects in general. Closely related to this doubt is the common allegation that Frege was unable to solve a persistent version of the Caesar problem for value-ranges. It (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Polymorphism and the obstinate circularity of second order logic: A victims’ tale.Paolo Pistone - 2018 - Bulletin of Symbolic Logic 24 (1):1-52.
    The investigations on higher-order type theories and on the related notion of parametric polymorphism constitute the technical counterpart of the old foundational problem of the circularity of second and higher-order logic. However, the epistemological significance of such investigations has not received much attention in the contemporary foundational debate.We discuss Girard’s normalization proof for second order type theory or System F and compare it with two faulty consistency arguments: the one given by Frege for the logical system of the Grundgesetze and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Truth in Frege.Richard Heck & Robert May - 2018 - In Michael Glanzberg (ed.), The Oxford Handbook of Truth. Oxford, United Kingdom: Oxford University Press. pp. 193-213.
    A general survey of Frege's views on truth, the paper explores the problems in response to which Frege's distinctive view that sentences refer to truth-values develops. It also discusses his view that truth-values are objects and the so-called regress argument for the indefinability of truth. Finally, we consider, very briefly, the question whether Frege was a deflationist.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Philosophy of Language in the Twentieth Century.Jason Stanley - 2008 - In Dermot Moran (ed.), The Routledge Companion to Twentieth Century Philosophy. Routledge. pp. 382-437.
    In the Twentieth Century, Logic and Philosophy of Language are two of the few areas of philosophy in which philosophers made indisputable progress. For example, even now many of the foremost living ethicists present their theories as somewhat more explicit versions of the ideas of Kant, Mill, or Aristotle. In contrast, it would be patently absurd for a contemporary philosopher of language or logician to think of herself as working in the shadow of any figure who died before the Twentieth (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Frege on Indirect Proof.Ivan Welty - 2011 - History and Philosophy of Logic 32 (3):283-290.
    Frege's account of indirect proof has been thought to be problematic. This thought seems to rest on the supposition that some notion of logical consequence ? which Frege did not have ? is indispensable for a satisfactory account of indirect proof. It is not so. Frege's account is no less workable than the account predominant today. Indeed, Frege's account may be best understood as a restatement of the latter, although from a higher order point of view. I argue that this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Term Models for Abstraction Principles.Leon Horsten & Øystein Linnebo - 2016 - Journal of Philosophical Logic 45 (1):1-23.
    Kripke’s notion of groundedness plays a central role in many responses to the semantic paradoxes. Can the notion of groundedness be brought to bear on the paradoxes that arise in connection with abstraction principles? We explore a version of grounded abstraction whereby term models are built up in a ‘grounded’ manner. The results are mixed. Our method solves a problem concerning circularity and yields a ‘grounded’ model for the predicative theory based on Frege’s Basic Law V. However, the method is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Review of Kazuyuki Nomoto "Frege Tetsugaku no Zenbou (Gottlob Freges Logizismus und seine logische Semantik als der Prototyp)". [REVIEW]Hidenori Kurokawa - 2014 - Journal of the Japan Association for Philosophy of Science 42 (1):39-54.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege's proof of referentiality.Øystein Linnebo - 2004 - Notre Dame Journal of Formal Logic 45 (2):73-98.
    I present a novel interpretation of Frege’s attempt at Grundgesetze I §§29-31 to prove that every expression of his language has a unique reference. I argue that Frege’s proof is based on a contextual account of reference, similar to but more sophisticated than that enshrined in his famous Context Principle. Although Frege’s proof is incorrect, I argue that the account of reference on which it is based is of potential philosophical value, and I analyze the class of cases to which (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Syntax in Basic Laws §§29–32.Bryan Pickel - 2010 - Notre Dame Journal of Formal Logic 51 (2):253-277.
    In order to accommodate his view that quantifiers are predicates of predicates within a type theory, Frege introduces a rule which allows a function name to be formed by removing a saturated name from another saturated name which contains it. This rule requires that each name has a rather rich syntactic structure, since one must be able to recognize the occurrences of a name in a larger name. However, I argue that Frege is unable to account for this syntactic structure. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The semantics of value-range names and frege’s proof of referentiality.Matthias Schirn - 2018 - Review of Symbolic Logic 11 (2):224-278.
    In this article, I try to shed some new light onGrundgesetze§10, §29–§31 with special emphasis on Frege’s criteria and proof of referentiality and his treatment of the semantics of canonical value-range names. I begin by arguing against the claim, recently defended by several Frege scholars, that the first-order domain inGrundgesetzeis restricted to value-ranges, but conclude that there is an irresolvable tension in Frege’s view. The tension has a direct impact on the semantics of the concept-script, not least on the semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Predicative Logic and Formal Arithmetic.John P. Burgess & A. P. Hazen - 1998 - Notre Dame Journal of Formal Logic 39 (1):1-17.
    After a summary of earlier work it is shown that elementary or Kalmar arithmetic can be interpreted within the system of Russell's Principia Mathematica with the axiom of infinity but without the axiom of reducibility.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Hume’s Principle and Axiom V Reconsidered: Critical Reflections on Frege and His Interpreters.Matthias Schirn - 2006 - Synthese 148 (1):171-227.
    In this paper, I shall discuss several topics related to Frege's paradigms of second-order abstraction principles and his logicism. The discussion includes a critical examination of some controversial views put forward mainly by Robin Jeshion, Tyler Burge, Crispin Wright, Richard Heck and John MacFarlane. In the introductory section, I try to shed light on the connection between logical abstraction and logical objects. The second section contains a critical appraisal of Frege's notion of evidence and its interpretation by Jeshion, the introduction (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Status of Value-ranges in the Argument of Basic Laws of Arithmetic I §10.Thomas Lockhart - 2017 - History and Philosophy of Logic 38 (4):345-363.
    Frege's concern in GGI §10 is neither with the epistemological issue of how we come to know about value-ranges, nor with the semantic-metaphysical issue of whether we have said enough about such objects in order to ensure that any kind of reference to them is possible. The problem which occupies Frege in GGI §10 is the general problem according to which we ‘cannot yet decide’, for any arbitrary function, what value ‘’ has if ‘ℵ’ is a canonical value-range name. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On a Consistent Subsystem of Frege's Grundgesetze.John P. Burgess - 1998 - Notre Dame Journal of Formal Logic 39 (2):274-278.
    Parsons has given a (nonconstructive) proof that the first-order fragment of the system of Frege's Grundgesetze is consistent. Here a constructive proof of the same result is presented.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Consistent fragments of grundgesetze and the existence of non-logical objects.Kai F. Wehmeier - 1999 - Synthese 121 (3):309-328.
    In this paper, I consider two curious subsystems ofFrege's Grundgesetze der Arithmetik: Richard Heck's predicative fragment H, consisting of schema V together with predicative second-order comprehension (in a language containing a syntactical abstraction operator), and a theory T in monadic second-order logic, consisting of axiom V and 1 1-comprehension (in a language containing anabstraction function). I provide a consistency proof for the latter theory, thereby refuting a version of a conjecture by Heck. It is shown that both Heck and T (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations