Switch to: References

Add citations

You must login to add citations.
  1. Conservative fragments of $${{S}^{1}{2}}$$ and $${{R}^{1}{2}}$$. [REVIEW]Chris Pollett - 2011 - Archive for Mathematical Logic 50 (3):367-393.
    Conservative subtheories of $${{R}^{1}_{2}}$$ and $${{S}^{1}_{2}}$$ are presented. For $${{S}^{1}_{2}}$$, a slight tightening of Jeřábek’s result (Math Logic Q 52(6):613–624, 2006) that $${T^{0}_{2} \preceq_{\forall \Sigma^{b}_{1}}S^{1}_{2}}$$ is presented: It is shown that $${T^{0}_{2}}$$ can be axiomatised as BASIC together with induction on sharply bounded formulas of one alternation. Within this $${\forall\Sigma^{b}_{1}}$$ -theory, we define a $${\forall\Sigma^{b}_{0}}$$ -theory, $${T^{-1}_{2}}$$, for the $${\forall\Sigma^{b}_{0}}$$ -consequences of $${S^{1}_{2}}$$. We show $${T^{-1}_{2}}$$ is weak by showing it cannot $${\Sigma^{b}_{0}}$$ -define division by 3. We then consider what (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the finite axiomatizability of.Chris Pollett - 2018 - Mathematical Logic Quarterly 64 (1-2):6-24.
    The question of whether the bounded arithmetic theories and are equal is closely connected to the complexity question of whether is equal to. In this paper, we examine the still open question of whether the prenex version of,, is equal to. We give new dependent choice‐based axiomatizations of the ‐consequences of and. Our dependent choice axiomatizations give new normal forms for the ‐consequences of and. We use these axiomatizations to give an alternative proof of the finite axiomatizability of and to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Independence results for variants of sharply bounded induction.Leszek Aleksander Kołodziejczyk - 2011 - Annals of Pure and Applied Logic 162 (12):981-990.
    The theory , axiomatized by the induction scheme for sharply bounded formulae in Buss’ original language of bounded arithmetic , has recently been unconditionally separated from full bounded arithmetic S2. The method used to prove the separation is reminiscent of those known from the study of open induction.We make the connection to open induction explicit, showing that models of can be built using a “nonstandard variant” of Wilkie’s well-known technique for building models of IOpen. This makes it possible to transfer (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Real closures of models of weak arithmetic.Emil Jeřábek & Leszek Aleksander Kołodziejczyk - 2013 - Archive for Mathematical Logic 52 (1):143-157.
    D’Aquino et al. (J Symb Log 75(1):1–11, 2010) have recently shown that every real-closed field with an integer part satisfying the arithmetic theory IΣ4 is recursively saturated, and that this theorem fails if IΣ4 is replaced by IΔ0. We prove that the theorem holds if IΣ4 is replaced by weak subtheories of Buss’ bounded arithmetic: PV or $${\Sigma^b_1-IND^{|x|_k}}$$. It also holds for IΔ0 (and even its subtheory IE 2) under a rather mild assumption on cofinality. On the other hand, it (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations