Switch to: References

Add citations

You must login to add citations.
  1. Natural selection as a population-level causal process.Roberta L. Millstein - 2006 - British Journal for the Philosophy of Science 57 (4):627-653.
    Recent discussions in the philosophy of biology have brought into question some fundamental assumptions regarding evolutionary processes, natural selection in particular. Some authors argue that natural selection is nothing but a population-level, statistical consequence of lower-level events (Matthen and Ariew [2002]; Walsh et al. [2002]). On this view, natural selection itself does not involve forces. Other authors reject this purely statistical, population-level account for an individual-level, causal account of natural selection (Bouchard and Rosenberg [2004]). I argue that each of these (...)
    Download  
     
    Export citation  
     
    Bookmark   158 citations  
  • A New Foundation for the Propensity Interpretation of Fitness.Charles H. Pence & Grant Ramsey - 2013 - British Journal for the Philosophy of Science 64 (4):851-881.
    The propensity interpretation of fitness (PIF) is commonly taken to be subject to a set of simple counterexamples. We argue that three of the most important of these are not counterexamples to the PIF itself, but only to the traditional mathematical model of this propensity: fitness as expected number of offspring. They fail to demonstrate that a new mathematical model of the PIF could not succeed where this older model fails. We then propose a new formalization of the PIF that (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • The pomp of superfluous causes: The interpretation of evolutionary theory.Denis M. Walsh - 2007 - Philosophy of Science 74 (3):281-303.
    There are two competing interpretations of the modern synthesis theory of evolution: the dynamical (also know as ‘traditional’) and the statistical. The dynamical interpretation maintains that explanations offered under the auspices of the modern synthesis theory articulate the causes of evolution. It interprets selection and drift as causes of population change. The statistical interpretation holds that modern synthesis explanations merely cite the statistical structure of populations. This paper offers a defense of statisticalism. It argues that a change in trait frequencies (...)
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • Not a sure thing: Fitness, probability, and causation.Denis M. Walsh - 2010 - Philosophy of Science 77 (2):147-171.
    In evolutionary biology changes in population structure are explained by citing trait fitness distribution. I distinguish three interpretations of fitness explanations—the Two‐Factor Model, the Single‐Factor Model, and the Statistical Interpretation—and argue for the last of these. These interpretations differ in their degrees of causal commitment. The first two hold that trait fitness distribution causes population change. Trait fitness explanations, according to these interpretations, are causal explanations. The last maintains that trait fitness distribution correlates with population change but does not cause (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • Selection and causation.Mohan Matthen & André Ariew - 2009 - Philosophy of Science 76 (2):201-224.
    We have argued elsewhere that: (A) Natural selection is not a cause of evolution. (B) A resolution-of-forces (or vector addition) model does not provide us with a proper understanding of how natural selection combines with other evolutionary influences. These propositions have come in for criticism recently, and here we clarify and defend them. We do so within the broad framework of our own “hierarchical realization model” of how evolutionary influences combine.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Selection, drift, and the “forces” of evolution.Christopher Stephens - 2004 - Philosophy of Science 71 (4):550-570.
    Recently, several philosophers have challenged the view that evolutionary theory is usefully understood by way of an analogy with Newtonian mechanics. Instead, they argue that evolutionary theory is merely a statistical theory. According to this alternate approach, natural selection and random genetic drift are not even causes, much less forces. I argue that, properly understood, the Newtonian analogy is unproblematic and illuminating. I defend the view that selection and drift are causes in part by attending to a pair of important (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • The confusions of fitness.André Ariew & Richard C. Lewontin - 2004 - British Journal for the Philosophy of Science 55 (2):347-363.
    The central point of this essay is to demonstrate the incommensurability of ‘Darwinian fitness’ with the numeric values associated with reproductive rates used in population genetics. While sometimes both are called ‘fitness’, they are distinct concepts coming from distinct explanatory schemes. Further, we try to outline a possible answer to the following question: from the natural properties of organisms and a knowledge of their environment, can we construct an algorithm for a particular kind of organismic life-history pattern that itself will (...)
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • A persistence enhancing propensity account of ecological function to explain ecosystem evolution.Antoine C. Dussault & Frédéric Bouchard - 2017 - Synthese 194 (4).
    We argue that ecology in general and biodiversity and ecosystem function research in particular need an understanding of functions which is both ahistorical and evolutionarily grounded. A natural candidate in this context is Bigelow and Pargetter’s evolutionary forward-looking account which, like the causal role account, assigns functions to parts of integrated systems regardless of their past history, but supplements this with an evolutionary dimension that relates functions to their bearers’ ability to thrive and perpetuate themselves. While Bigelow and Pargetter’s account (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • A critical review of the statisticalist debate.Jun Otsuka - 2016 - Biology and Philosophy 31 (4):459-482.
    Over the past decade philosophers of biology have discussed whether evolutionary theory is a causal theory or a phenomenological study of evolution based solely on the statistical features of a population. This article reviews this controversy from three aspects, respectively concerning the assumptions, applications, and explanations of evolutionary theory, with a view to arriving at a definite conclusion in each contention. In so doing I also argue that an implicit methodological assumption shared by both sides of the debate, namely the (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Darwinism without populations: a more inclusive understanding of the “Survival of the Fittest”.Frédéric Bouchard - 2011 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 42 (1):106-114.
    Following Wallace’s suggestion, Darwin framed his theory using Spencer’s expression “survival of the fittest”. Since then, fitness occupies a significant place in the conventional understanding of Darwinism, even though the explicit meaning of the term ‘fitness’ is rarely stated. In this paper I examine some of the different roles that fitness has played in the development of the theory. Whereas the meaning of fitness was originally understood in ecological terms, it took a statistical turn in terms of reproductive success throughout (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Natural selection as a mechanism.D. Benjamin Barros - 2008 - Philosophy of Science 75 (3):306-322.
    Skipper and Millstein (2005) argued that existing conceptions of mechanisms failed to "get at" natural selection, but left open the possibility that a refined conception of mechanisms could resolve the problems that they identified. I respond to Skipper and Millstein, and argue that while many of their points have merit, their objections can be overcome and that natural selection can be characterized as a mechanism. In making this argument, I discuss the role of regularity in mechanisms, and develop an account (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • What Fitness Can’t Be.André Ariew & Zachary Ernst - 2009 - Erkenntnis 71 (3):289-301.
    Recently advocates of the propensity interpretation of fitness have turned critics. To accommodate examples from the population genetics literature they conclude that fitness is better defined broadly as a family of propensities rather than the propensity to contribute descendants to some future generation. We argue that the propensity theorists have misunderstood the deeper ramifications of the examples they cite. These examples demonstrate why there are factors outside of propensities that determine fitness. We go on to argue for the more general (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • How to Read ‘Heritability’ in the Recipe Approach to Natural Selection.Pierrick Bourrat - 2015 - British Journal for the Philosophy of Science 66 (4):883-903.
    There are two ways evolution by natural selection is conceptualized in the literature. One provides a ‘recipe’ for ENS incorporating three ingredients: variation, differences in fitness, and heritability. The other provides formal equations of evolutionary change and partitions out selection from other causes of evolutionary changes such as transmission biases or drift. When comparing the two approaches there seems to be a tension around the concept of heritability. A recent claim has been made that the recipe approach is flawed and (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Productivity, relevance and natural selection.Stuart Glennan - 2009 - Biology and Philosophy 24 (3):325-339.
    Recent papers by a number of philosophers have been concerned with the question of whether natural selection is a causal process, and if it is, whether the causes of selection are properties of individuals or properties of populations. I shall argue that much confusion in this debate arises because of a failure to distinguish between causal productivity and causal relevance. Causal productivity is a relation that holds between events connected via continuous causal processes, while causal relevance is a relationship that (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Variance, Invariance and Statistical Explanation.D. M. Walsh - 2015 - Erkenntnis 80 (3):469-489.
    The most compelling extant accounts of explanation casts all explanations as causal. Yet there are sciences, theoretical population biology in particular, that explain their phenomena by appeal to statistical, non-causal properties of ensembles. I develop a generalised account of explanation. An explanation serves two functions: metaphysical and cognitive. The metaphysical function is discharged by identifying a counterfactually robust invariance relation between explanans event and explanandum. The cognitive function is discharged by providing an appropriate description of this relation. I offer examples (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Natural Kinds: The Expendables.François Papale & David Montminy - 2023 - Canadian Journal of Philosophy 53 (2):103-120.
    Theoreticians that defend a form of realism regarding natural kinds minimally entertain the belief that the world features divisions into kinds and that the natural kind concept is a useful tool for philosophy of science. The objective of this paper is to challenge these assumptions. First, we challenge realism toward natural kinds by showing that the main arguments for their existence, which rely on the epistemic success of natural kinds, are unsatisfactory. Second, we show that, whether they exist or not, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The strategic gene.David Haig - 2012 - Biology and Philosophy 27 (4):461-479.
    Abstract Gene-selectionists define fundamental terms in non-standard ways. Genes are determinants of difference. Phenotypes are defined as a gene’s effects relative to some alternative whereas the environment is defined as all parts of the world that are shared by the alternatives being compared. Environments choose among phenotypes and thereby choose among genes. By this process, successful gene sequences become stores of information about what works in the environment. The strategic gene is defined as a set of gene tokens that combines (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • What determines biological fitness? The problem of the reference environment.Marshall Abrams - 2009 - Synthese 166 (1):21-40.
    Organisms' environments are thought to play a fundamental role in determining their fitness and hence in natural selection. Existing intuitive conceptions of environment are sufficient for biological practice. I argue, however, that attempts to produce a general characterization of fitness and natural selection are incomplete without the help of general conceptions of what conditions are included in the environment. Thus there is a "problem of the reference environment"—more particularly, problems of specifying principles which pick out those environmental conditions which determine (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Evolution by means of natural selection without reproduction: revamping Lewontin’s account.François Papale - 2020 - Synthese 198 (11):10429-10455.
    This paper analyzes recent attempts to reject reproduction with lineage formation as a necessary condition for evolution by means of natural selection :560–570, 2008; Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci 42:106–114, 2011; Bourrat in Biol Philos 29:517–538, 2014; Br J Philos Sci 66:883–903, 2015; Charbonneau in Philos Sci 81:727–740, 2014; Doolittle and Inkpen in Proc Natl Acad Sci 115:4006–4014, 2018). Building on the strengths of these attempts and avoiding their pitfalls, it is argued that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Ecosystem Evolution is About Variation and Persistence, not Populations and Reproduction.Frédéric Bouchard - 2014 - Biological Theory 9 (4):382-391.
    Building upon a non-standard understanding of evolutionary process focusing on variation and persistence, I will argue that communities and ecosystems can evolve by natural selection as emergent individuals. Evolutionary biology has relied ever increasingly on the modeling of population dynamics. Most have taken for granted that we all agree on what is a population. Recent work has reexamined this perceived consensus. I will argue that there are good reasons to restrict the term “population” to collections of monophyletically related replicators and (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Probability in Biology: The Case of Fitness.Roberta L. Millstein - 2016 - In Alan Hájek & Christopher Hitchcock, The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 601-622.
    I argue that the propensity interpretation of fitness, properly understood, not only solves the explanatory circularity problem and the mismatch problem, but can also withstand the Pandora’s box full of problems that have been thrown at it. Fitness is the propensity (i.e., probabilistic ability, based on heritable physical traits) for organisms or types of organisms to survive and reproduce in particular environments and in particular populations for a specified number of generations; if greater than one generation, “reproduction” includes descendants of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Walsh on causes and evolution.Robert Northcott - 2010 - Philosophy of Science 77 (3):457-467.
    Denis Walsh has written a striking new defense in this journal of the statisticalist (i.e., noncausalist) position regarding the forces of evolution. I defend the causalist view against his new objections. I argue that the heart of the issue lies in the nature of nonadditive causation. Detailed consideration of that turns out to defuse Walsh’s ‘description‐dependence’ critique of causalism. Nevertheless, the critique does suggest a basis for reconciliation between the two competing views. *Received December 2009; revised December 2009. †To contact (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • How Do Natural Selection and Random Drift Interact?Marshall Abrams - 2007 - Philosophy of Science 74 (5):666-679.
    One controversy about the existence of so called evolutionary forces such as natural selection and random genetic drift concerns the sense in which such “forces” can be said to interact. In this paper I explain how natural selection and random drift can interact. In particular, I show how population-level probabilities can be derived from individual-level probabilities, and explain the sense in which natural selection and drift are embodied in these population-level probabilities. I argue that whatever causal character the individual-level probabilities (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Environment as Abstraction.Denis Walsh - 2021 - Biological Theory 17 (1):68-79.
    The concept of the environment appears to be indispensably involved in adaptive explanation. Quite what its role is, however, is a matter of some dispute. The environment is customarily viewed as the dual of the organism; a wholly external, discrete, autonomous cause of evolution. On this view, the external environment is the principal cause of the adaptedness of form, and the determinant of what it is to be an adaptation. I argue that this conception of the environment neither adequately explains (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Causal Structure of Evolutionary Theory.Grant Ramsey - 2016 - Australasian Journal of Philosophy 94 (3):421-434.
    One contentious debate in the philosophy of biology is that between the statisticalists and causalists. The former understand core evolutionary concepts like fitness and selection to be mere statistical summaries of underlying causal processes. In this view, evolutionary changes cannot be causally explained by selection or fitness. The causalist side, on the other hand, holds that populations can change in response to selection—one can cite fitness differences or driftability in causal explanations of evolutionary change. But, on the causalist side, it (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Distinguishing Natural Selection from Other Evolutionary Processes in the Evolution of Altruism.Pierrick Bourrat - 2015 - Biological Theory 10 (4):311-321.
    Altruism is one of the most studied topics in theoretical evolutionary biology. The debate surrounding the evolution of altruism has generally focused on the conditions under which altruism can evolve and whether it is better explained by kin selection or multilevel selection. This debate has occupied the forefront of the stage and left behind a number of equally important questions. One of them, which is the subject of this article, is whether the word “selection” in “kin selection” and “multilevel selection” (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Natural selection and the reference grain problem.Pierrick Bourrat - 2020 - Studies in History and Philosophy of Science Part A 80:1-8.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Explaining Drift from a Deterministic Setting.Pierrick Bourrat - 2017 - Biological Theory 12 (1):27-38.
    Drift is often characterized in statistical terms. Yet such a purely statistical characterization is ambiguous for it can accept multiple physical interpretations. Because of this ambiguity it is important to distinguish what sorts of processes can lead to this statistical phenomenon. After presenting a physical interpretation of drift originating from the most popular interpretation of fitness, namely the propensity interpretation, I propose a different one starting from an analysis of the concept of drift made by Godfrey-Smith. Further on, I show (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Population thinking as trope nominalism.Bence Nanay - 2010 - Synthese 177 (1):91 - 109.
    The concept of population thinking was introduced by Ernst Mayr as the right way of thinking about the biological domain, but it is difficult to find an interpretation of this notion that is both unproblematic and does the theoretical work it was intended to do. I argue that, properly conceived, Mayr’s population thinking is a version of trope nominalism: the view that biological property-types do not exist or at least they play no explanatory role. Further, although population thinking has been (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Symbiosis, lateral function transfer and the (many) saplings of life.Frédéric Bouchard - 2010 - Biology and Philosophy 25 (4):623-641.
    One of intuitions driving the acceptance of a neat structured tree of life is the assumption that organisms and the lineages they form have somewhat stable spatial and temporal boundaries. The phenomenon of symbiosis shows us that such ‘fixist’ assumptions does not correspond to how the natural world actually works. The implications of lateral gene transfer (LGT) have been discussed elsewhere; I wish to stress a related point. I will focus on lateral function transfer (LFT) and will argue, using examples (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Driftability.Grant Ramsey - 2013 - Synthese 190 (17):3909-3928.
    In this paper, I argue (contra some recent philosophical work) that an objective distinction between natural selection and drift can be drawn. I draw this distinction by conceiving of drift, in the most fundamental sense, as an individual-level phenomenon. This goes against some other attempts to distinguish selection from drift, which have argued either that drift is a population-level process or that it is a population-level product. Instead of identifying drift with population-level features, the account introduced here can explain these (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Replication without replicators.Bence Nanay - 2011 - Synthese 179 (3):455-477.
    According to a once influential view of selection, it consists of repeated cycles of replication and interaction. It has been argued that this view is wrong: replication is not necessary for evolution by natural selection. I analyze the nine most influential arguments for this claim and defend the replication–interaction conception of selection against these objections. In order to do so, however, the replication–interaction conception of selection needs to be modified significantly. My proposal is that replication is not the copying of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Fitness and Propensity’s Annulment?Marshall Abrams - 2007 - Biology and Philosophy 22 (1):115-130.
    Recent debate on the nature of probabilities in evolutionary biology has focused largely on the propensity interpretation of fitness (PIF), which defines fitness in terms of a conception of probability known as “propensity”. However, proponents of this conception of fitness have misconceived the role of probability in the constitution of fitness. First, discussions of probability and fitness have almost always focused on organism effect probability, the probability that an organism and its environment cause effects. I argue that much of the (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • An explication of the causal dimension of drift.Peter Gildenhuys - 2009 - British Journal for the Philosophy of Science 60 (3):521-555.
    Among philosophers, controversy over the notion of drift in population genetics is ongoing. This is at least partly because the notion of drift has an ambiguous usage among population geneticists. My goal in this paper is to explicate the causal dimension of drift, to say what causal influences are responsible for the stochasticity in population genetics models. It is commonplace for population genetics to oppose the influence of selection to that of drift, and to consider how the dynamics of populations (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Organisms, Traits, and Population Subdivisions: Two Arguments against the Causal Conception of Fitness?Grant30 Ramsey - 2013 - British Journal for the Philosophy of Science 64 (3):589-608.
    A major debate in the philosophy of biology centers on the question of how we should understand the causal structure of natural selection. This debate is polarized into the causal and statistical positions. The main arguments from the statistical side are that a causal construal of the theory of natural selection's central concept, fitness, either (i) leads to inaccurate predictions about population dynamics, or (ii) leads to an incoherent set of causal commitments. In this essay, I argue that neither the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Natural selection.Robert Brandon - 2008 - Stanford Encyclopedia of Philosophy.
    Darwin's theory of evolution by natural selection provided the first, and only, causal-mechanistic account of the existence of adaptations in nature. As such, it provided the first, and only, scientific alternative to the “argument from design”. That alone would account for its philosophical significance. But the theory also raises other philosophical questions not encountered in the study of the theories of physics. Unfortunately the concept of natural selection is intimately intertwined with the other basic concepts of evolutionary theory—such as the (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Organisms, Traits, and Population Subdivisions: Two Arguments against the Causal Conception of Fitness?Grant Ramsey - 2013 - British Journal for the Philosophy of Science 64 (3):589-608.
    A major debate in the philosophy of biology centers on the question of how we should understand the causal structure of natural selection. This debate is polarized into the causal and statistical positions. The main arguments from the statistical side are that a causal construal of the theory of natural selection's central concept, fitness, either (i) leads to inaccurate predictions about population dynamics, or (ii) leads to an incoherent set of causal commitments. In this essay, I argue that neither the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Populations and pigeons: Prosaic pluralism about evolutionary causes.Marshall Abrams - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (3):294-301.
    and was correct to conclude that the way a biological population is described should affect conclusions about whether natural selection occurs, but wrong to conclude that natural selection is therefore not a cause. After providing a new argument that ignored crucial biological details, I give a biological illustration that motivates a fairly extreme dependence on description. I argue that contrary to an implication of , biologists allow much flexibility in describing populations, as contemporary research on recent human evolution shows. Properly (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Newtonian forces and evolutionary biology: A problem and solution for extending the force interpretation.Joshua Filler - 2009 - Philosophy of Science 76 (5):774-783.
    There has recently been a renewed interest in the “force” interpretation of evolutionary biology. In this article, I present the general structure of the arguments for the force interpretation and identify a problem in its overly permissive conditions for being a Newtonian force. I then attempt a solution that (1) helps to illuminate the difference between forces and other types of causes and (2) makes room for random genetic drift as a force. In particular, I argue that forces are not (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Fitness: static or dynamic?Peter Takacs & Pierrick Bourrat - 2021 - European Journal for Philosophy of Science 11 (4):1-20.
    The most consistent definition of fitness makes it a static property of organisms. However, this is not how fitness is used in many evolutionary models. In those models, fitness is permitted to vary with an organism’s circumstances. According to this second conception, fitness is dynamic. There is consequently tension between these two conceptions of fitness. One recently proposed solution suggests resorting to conditional properties. We argue, however, that this solution is unsatisfactory. Using a very simple model, we show that it (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Natural Selection and Causal Productivity.Roberta L. Millstein - 2013 - In Hsiang-Ke Chao, Szu-Ting Chen & Roberta L. Millstein, Mechanism and Causality in Biology and Economics. Dordrecht: Springer.
    In the recent philosophical literature, two questions have arisen concerning the status of natural selection: (1) Is it a population-level phenomenon, or is it an organism-level phenomenon? (2) Is it a causal process, or is it a purely statistical summary of lower-level processes? In an earlier work (Millstein, Br J Philos Sci, 57(4):627–653, 2006), I argue that natural selection should be understood as a population-level causal process, rather than a purely statistical population-level summation of lower-level processes or as an organism-level (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Natural Selection and Drift as Individual-Level Causes of Evolution.Pierrick Bourrat - 2018 - Acta Biotheoretica 66 (3):159-176.
    In this paper I critically evaluate Reisman and Forber’s :1113–1123, 2005) arguments that drift and natural selection are population-level causes of evolution based on what they call the manipulation condition. Although I agree that this condition is an important step for identifying causes for evolutionary change, it is insufficient. Following Woodward, I argue that the invariance of a relationship is another crucial parameter to take into consideration for causal explanations. Starting from Reisman and Forber’s example on drift and after having (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Can fitness differences be a cause of evolution?Grant Ramsey - 2013 - Philosophy, Theory, and Practice in Biology 5 (20130604):1-13.
    Biological fitness is a foundational concept in the theory of natural selection. Natural selection is often defined in terms of fitness differences as “any consistent difference in fitness (i.e., survival and reproduction) among phenotypically different biological entities” (Futuyma 1998, 349). And in Lewontin’s (1970) classic articulation of the theory of natural selection, he lists fitness differences as one of the necessary conditions for evolution by natural selection to occur. Despite this foundational position of fitness, there remains much debate over the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Model Landscapes in the Higgs Sector.Arianna Borrelli & Michael Stöltzner - 2013 - In Vassilios Karakostas & Dennis Dieks, EPSA11 Perspectives and Foundational Problems in Philosophy of Science. Cham: Springer. pp. 241--252.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Evidence, Argument and Prediction.Nancy Cartwright - 2013 - In Vassilios Karakostas & Dennis Dieks, EPSA11 Perspectives and Foundational Problems in Philosophy of Science. Cham: Springer. pp. 3--17.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Infinite populations and counterfactual frequencies in evolutionary theory.Marshall Abrams - 2006 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 37 (2):256-268.
    One finds intertwined with ideas at the core of evolutionary theory claims about frequencies in counterfactual and infinitely large populations of organisms, as well as in sets of populations of organisms. One also finds claims about frequencies in counterfactual and infinitely large populations—of events—at the core of an answer to a question concerning the foundations of evolutionary theory. The question is this: To what do the numerical probabilities found throughout evolutionary theory correspond? The answer in question says that evolutionary probabilities (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Towards a characterization of metaphysics of biology: metaphysics for and metaphysics in biology.Vanessa Triviño - 2022 - Synthese 200 (5):1-21.
    Since the last decades of the twentieth and the beginning of the twenty-first century, the use of metaphysics by philosophers when approaching conceptual problems in biology has increased. Some philosophers call this tendency in philosophy of biology ‘Metaphysics of Biology’. In this paper, I aim at characterizing Metaphysics of Biology by paying attention to the diverse ways philosophers use metaphysics when addressing conceptual problems in biology. I will claim that there are two different modes of doing Metaphysics of Biology, namely (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inscrutability and the Opacity of Natural Selection and Random Genetic Drift: Distinguishing the Epistemic and Metaphysical Aspects.Philippe Huneman - 2015 - Erkenntnis 80 (3):491-518.
    ‘Statisticalists’ argue that the individual interactions of organisms taken together constitute natural selection. On this view, natural selection is an aggregated effect of interactions rather than some added cause acting on populations. The statisticalists’ view entails that natural selection and drift are indistinguishable aggregated effects of interactions, so that it becomes impossible to make a difference between them. The present paper attempts to make sense of the difference between selection and drift, given the main insights of statisticalism; basically, it will (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A causal dispositional account of fitness.Laura Nuño de la Rosa & Vanessa Triviño - 2016 - History and Philosophy of the Life Sciences 38 (3):1-18.
    The notion of fitness is usually equated to reproductive success. However, this actualist approach presents some difficulties, mainly the explanatory circularity problem, which have lead philosophers of biology to offer alternative definitions in which fitness and reproductive success are distinguished. In this paper, we argue that none of these alternatives is satisfactory and, inspired by Mumford and Anjum’s dispositional theory of causation, we offer a definition of fitness as a causal dispositional property. We argue that, under this framework, the distinctiveness (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Origins and Development of the Idea of Organism-Environment Interaction.Trevor Pearce - 2014 - In Gillian Barker, Eric Desjardins & Trevor Pearce, Entangled Life: Organism and Environment in the Biological and Social Sciences. Dordrecht: Springer.
    The idea of organism-environment interaction, at least in its modern form, dates only to the mid-nineteenth century. After sketching the origins of the organism-environment dichotomy in the work of Auguste Comte and Herbert Spencer, I will chart its metaphysical and methodological influence on later scientists and philosophers such as Conwy Lloyd Morgan and John Dewey. In biology and psychology, the environment was seen as a causal agent, highlighting questions of organismic variation and plasticity. In philosophy, organism-environment interaction provided a new (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations