Switch to: References

Add citations

You must login to add citations.
  1. Note on 'Normalisation for Bilateral Classical Logic with some Philosophical Remarks'.Nils Kürbis - 2021 - Journal of Applied Logics 7 (8):2259-2261.
    This brief note corrects an error in one of the reduction steps in my paper 'Normalisation for Bilateral Classical Logic with some Philosophical Remarks' published in the Journal of Applied Logics 8/2 (2021): 531-556.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Belnap-Dunn Semantics for the Variants of BN4 and E4 which Contain Routley and Meyer’s Logic B.Sandra M. López - forthcoming - Logic and Logical Philosophy:29-56.
    The logics BN4 and E4 can be considered as the 4-valued logics of the relevant conditional and (relevant) entailment, respectively. The logic BN4 was developed by Brady in 1982 and the logic E4 by Robles and Méndez in 2016. The aim of this paper is to investigate the implicative variants (of both systems) which contain Routley and Meyer’s logic B and endow them with a Belnap-Dunn type bivalent semantics.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The lattice of all 4-valued implicative expansions of Belnap–Dunn logic containing Routley and Meyer’s basic logic Bd.Gemma Robles & José M. Méndez - 2024 - Logic Journal of the IGPL 32 (3):493-516.
    The well-known logic first degree entailment logic (FDE), introduced by Belnap and Dunn, is defined with |$\wedge $|⁠, |$\vee $| and |$\sim $| as the sole primitive connectives. The aim of this paper is to establish the lattice formed by the class of all 4-valued C-extending implicative expansions of FDE verifying the axioms and rules of Routley and Meyer’s basic logic B and its useful disjunctive extension B|$^{\textrm {d}}$|⁠. It is to be noted that Boolean negation (so, classical propositional logic) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Class of Implicative Expansions of Belnap-Dunn Logic in which Boolean Negation is Definable.Gemma Robles & José M. Méndez - 2023 - Journal of Philosophical Logic 52 (3):915-938.
    Belnap and Dunn’s well-known 4-valued logic FDE is an interesting and useful non-classical logic. FDE is defined by using conjunction, disjunction and negation as the sole propositional connectives. Then the question of expanding FDE with an implication connective is of course of great interest. In this sense, some implicative expansions of FDE have been proposed in the literature, among which Brady’s logic BN4 seems to be the preferred option of relevant logicians. The aim of this paper is to define a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is a Relevant Connective?Shawn Standefer - 2022 - Journal of Philosophical Logic 51 (4):919-950.
    There appears to be few, if any, limits on what sorts of logical connectives can be added to a given logic. One source of potential limitations is the motivating ideology associated with a logic. While extraneous to the logic, the motivating ideology is often important for the development of formal and philosophical work on that logic, as is the case with intuitionistic logic. One family of logics for which the philosophical ideology is important is the family of relevant logics. In (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Natural implicative expansions of variants of Kleene's strong 3-valued logic with Gödel-type and dual Gödel-type negation.Gemma Robles & José M. Méndez - 2021 - Journal of Applied Non-Classical Logics 31 (2):130-153.
    Let MK3 I and MK3 II be Kleene's strong 3-valued matrix with only one and two designated values, respectively. Next, let MK3 G be defined exactly as MK3 I, except th...
    Download  
     
    Export citation  
     
    Bookmark  
  • Belnap-Dunn semantics for natural implicative expansions of Kleene's strong three-valued matrix II. Only one designated value.Gemma Robles, Francisco Salto & José M. Méndez - 2019 - Journal of Applied Non-Classical Logics 29 (3):307-325.
    This paper is a sequel to ‘Belnap-Dunn semantics for natural implicative expansions of Kleene's strong three-valued matrix with two designated values’, where a ‘bivalent’ Belnap-Dunn semantics is provided for all the expansions referred to in its title. The aim of the present paper is to carry out a parallel investigation for all natural implicative expansions of Kleene's strong 3-valued matrix now with only one designated value.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Proof systems for various fde-based modal logics.Sergey Drobyshevich & Heinrich Wansing - 2020 - Review of Symbolic Logic 13 (4):720-747.
    We present novel proof systems for various FDE-based modal logics. Among the systems considered are a number of Belnapian modal logics introduced in Odintsov & Wansing and Odintsov & Wansing, as well as the modal logic KN4 with strong implication introduced in Goble. In particular, we provide a Hilbert-style axiom system for the logic $BK^{\square - } $ and characterize the logic BK as an axiomatic extension of the system $BK^{FS} $. For KN4 we provide both an FDE-style axiom system (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strengthening Brady’s Paraconsistent 4-Valued Logic BN4 with Truth-Functional Modal Operators.José M. Méndez & Gemma Robles - 2016 - Journal of Logic, Language and Information 25 (2):163-189.
    Łukasiewicz presented two different analyses of modal notions by means of many-valued logics: the linearly ordered systems Ł3,..., Open image in new window,..., \; the 4-valued logic Ł he defined in the last years of his career. Unfortunately, all these systems contain “Łukasiewicz type paradoxes”. On the other hand, Brady’s 4-valued logic BN4 is the basic 4-valued bilattice logic. The aim of this paper is to show that BN4 can be strengthened with modal operators following Łukasiewicz’s strategy for defining truth-functional (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Real impossible worlds : the bounds of possibility.Ira Georgia Kiourti - 2010 - Dissertation, University of St Andrews
    Lewisian Genuine Realism about possible worlds is often deemed unable to accommodate impossible worlds and reap the benefits that these bestow to rival theories. This thesis explores two alternative extensions of GR into the terrain of impossible worlds. It is divided in six chapters. Chapter I outlines Lewis’ theory, the motivations for impossible worlds, and the central problem that such worlds present for GR: How can GR even understand the notion of an impossible world, given Lewis’ reductive theoretical framework? Since (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A 2-set-up Routley-Meyer Semantics for the 4-valued Relevant Logic E4.Gemma Robles, Sandra M. López, José M. Blanco, Marcos M. Recio & Jesús R. Paradela - 2016 - Bulletin of the Section of Logic 45 (2).
    The logic BN4 can be considered as the 4-valued logic of the relevant conditional and the logic E4, as the 4-valued logic of entailment. The aim of this paper is to endow E4 with a 2-set-up Routley-Meyer semantics. It is proved that E4 is strongly sound and complete w.r.t. this semantics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Relational semantics for the 4-valued relevant logics BN4 and E4.Gemma Robles, José M. Blanco, Sandra M. López, Jesús R. Paradela & Marcos M. Recio - 2016 - Logic and Logical Philosophy 25 (2):173-201.
    The logic BN4 was defined by R.T. Brady in 1982. It can be considered as the 4-valued logic of the relevant conditional. E4 is a variant of BN4 that can be considered as the 4-valued logic of entailment. The aim of this paper is to define reduced general Routley-Meyer semantics for BN4 and E4. It is proved that BN4 and E4 are strongly sound and complete w.r.t. their respective semantics.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Simple gentzenizations for the formal formulae of contraction-less logics.Ross T. Brady - 1996 - Journal of Symbolic Logic 61 (4):1321-1346.
    In [1], we established Gentzenizations for a good range of relevant logics with distribution, but, in the process, we added inversion rules, which involved extra structural connectives, and also added the sentential constantt. Instead of eliminating them, we used conservative extension results to relate them back to the original logics. In [4], we eliminated the inversion rules andtand established a much simpler Gentzenization for the weak sentential relevant logicDW, and also for its quantificational extensionDWQ, but a restriction to normal formulae (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Combining Swap Structures: The Case of Paradefinite Ivlev-Like Modal Logics Based on $$FDE$$.Marcelo E. Coniglio - forthcoming - Studia Logica:1-52.
    The aim of this paper is to combine several Ivlev-like modal systems characterized by 4-valued non-deterministic matrices (Nmatrices) with $$\mathcal {IDM}4$$, a 4-valued expansion of Belnap–Dunn’s logic $$FDE$$ with an implication introduced by Pynko in 1999. In order to do this, we introduce a new methodology for combining logics which are characterized by means of swap structures, based on what we call superposition of snapshots. In particular, the combination of $$\mathcal {IDM}4$$ with $$Tm$$, the 4-valued Ivlev’s version of KT, will (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • EF4, EF4-M and EF4-Ł: A companion to BN4 and two modal four-valued systems without strong Łukasiewicz-type modal paradoxes. [REVIEW]José Miguel Blanco - forthcoming - Logic and Logical Philosophy:75-104.
    The logic BN4 was defined by R.T. Brady as a four-valued extension of Routley and Meyer’s basic logic B. The system EF4 is defined as a companion to BN4 to represent the four-valued system of implication. The system Ł was defined by J. Łukasiewicz and it is a four-valued modal logic that validates what is known as strong Łukasiewicz-type modal paradoxes. The systems EF4-M and EF4-Ł are defined as alternatives to Ł without modal paradoxes. This paper aims to define a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Boolean negation and non-conservativity III: the Ackermann constant.Tore Fjetland Øgaard - 2021 - Logic Journal of the IGPL 29 (3):370-384.
    It is known that many relevant logics can be conservatively extended by the truth constant known as the Ackermann constant. It is also known that many relevant logics can be conservatively extended by Boolean negation. This essay, however, shows that a range of relevant logics with the Ackermann constant cannot be conservatively extended by a Boolean negation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reduced Routley–Meyer semantics for the logics characterized by natural implicative expansions of Kleene’s strong 3-valued matrix.Gemma Robles - forthcoming - Logic Journal of the IGPL.
    Download  
     
    Export citation  
     
    Bookmark  
  • A paraconsistent 3-valued logic related to Godel logic G3.G. Robles & J. M. Mendez - 2014 - Logic Journal of the IGPL 22 (4):515-538.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Class of All Natural Implicative Expansions of Kleene’s Strong Logic Functionally Equivalent to Łkasiewicz’s 3-Valued Logic Ł3.Gemma Robles & José M. Méndez - 2020 - Journal of Logic, Language and Information 29 (3):349-374.
    We consider the logics determined by the set of all natural implicative expansions of Kleene’s strong 3-valued matrix and select the class of all logics functionally equivalent to Łukasiewicz’s 3-valued logic Ł3. The concept of a “natural implicative matrix” is based upon the notion of a “natural conditional” defined in Tomova.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Belnap-Dunn semantics for natural implicative expansions of Kleene's strong three-valued matrix with two designated values.Gemma Robles & José M. Méndez - 2019 - Journal of Applied Non-Classical Logics 29 (1):37-63.
    ABSTRACTA conditional is natural if it fulfils the three following conditions. It coincides with the classical conditional when restricted to the classical values T and F; it satisfies the Modus Ponens; and it is assigned a designated value whenever the value assigned to its antecedent is less than or equal to the value assigned to its consequent. The aim of this paper is to provide a ‘bivalent’ Belnap-Dunn semantics for all natural implicative expansions of Kleene's strong 3-valued matrix with two (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A Class of Implicative Expansions of Kleene’s Strong Logic, a Subclass of Which Is Shown Functionally Complete Via the Precompleteness of Łukasiewicz’s 3-Valued Logic Ł3.Gemma Robles & José M. Méndez - 2021 - Journal of Logic, Language and Information 30 (3):533-556.
    The present paper is a sequel to Robles et al. :349–374, 2020. https://doi.org/10.1007/s10849-019-09306-2). A class of implicative expansions of Kleene’s 3-valued logic functionally including Łukasiewicz’s logic Ł3 is defined. Several properties of this class and/or some of its subclasses are investigated. Properties contemplated include functional completeness for the 3-element set of truth-values, presence of natural conditionals, variable-sharing property and vsp-related properties.
    Download  
     
    Export citation  
     
    Bookmark  
  • A companion to Brady's 4-valued relevant logic BN4: The 4-valued logic of entailment E4.Gemma Robles & José M. Méndez - 2016 - Logic Journal of the IGPL 24 (5).
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Completeness via correspondence for extensions of the logic of paradox.Barteld Kooi & Allard Tamminga - 2012 - Review of Symbolic Logic 5 (4):720-730.
    Taking our inspiration from modal correspondence theory, we present the idea of correspondence analysis for many-valued logics. As a benchmark case, we study truth-functional extensions of the Logic of Paradox (LP). First, we characterize each of the possible truth table entries for unary and binary operators that could be added to LP by an inference scheme. Second, we define a class of natural deduction systems on the basis of these characterizing inference schemes and a natural deduction system for LP. Third, (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A note on functional relations in a certain class of implicative expansions of FDE related to Brady’s 4-valued logic BN4.Gemma Robles & José M. Méndez - forthcoming - Logic Journal of the IGPL.
    The logic E4 is related to Brady’s BN4 in a similar way to which Anderson and Belnap’s logic of entailment E is related to their logic of the relevant implication R. In ‘A companion to Brady’s 4-valued relevant logic: the 4-valued logic of entailment E4’, quoted in this paper, three alternatives to BN4 and another three to E4 are summarily introduced in a couple of pages as the only alternatives containing Routley and Meyer’s basic logic B, provided some conditions are (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Curry’s Paradox, Generalized Modus Ponens Axiom and Depth Relevance.Gemma Robles & José M. Méndez - 2014 - Studia Logica 102 (1):185-217.
    “Weak relevant model structures” (wr-ms) are defined on “weak relevant matrices” by generalizing Brady’s model structure ${\mathcal{M}_{\rm CL}}$ built upon Meyer’s Crystal matrix CL. It is shown how to falsify in any wr-ms the Generalized Modus Ponens axiom and similar schemes used to derive Curry’s Paradox. In the last section of the paper we discuss how to extend this method of falsification to more general schemes that could also be used in deriving Curry’s Paradox.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Dual Equivalent Two-valued Under-determined and Over-determined Interpretations for Łukasiewicz’s 3-valued Logic Ł3.Gemma Robles, Francisco Salto & José M. Méndez - 2014 - Journal of Philosophical Logic 43 (2-3):303-332.
    Łukasiewicz three-valued logic Ł3 is often understood as the set of all 3-valued valid formulas according to Łukasiewicz’s 3-valued matrices. Following Wojcicki, in addition, we shall consider two alternative interpretations of Ł3: “well-determined” Ł3a and “truth-preserving” Ł3b defined by two different consequence relations on the 3-valued matrices. The aim of this paper is to provide dual equivalent two-valued under-determined and over-determined interpretations for Ł3, Ł3a and Ł3b. The logic Ł3 is axiomatized as an extension of Routley and Meyer’s basic positive (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Dual Equivalent Two-valued Under-determined and Over-determined Interpretations for Łukasiewicz's 3-valued Logic Ł3.Gemma Robles, Francisco Salto & José M. Méndez - 2013 - Journal of Philosophical Logic (2-3):1-30.
    Łukasiewicz three-valued logic Ł3 is often understood as the set of all 3-valued valid formulas according to Łukasiewicz’s 3-valued matrices. Following Wojcicki, in addition, we shall consider two alternative interpretations of Ł3: “well-determined” Ł3a and “truth-preserving” Ł3b defined by two different consequence relations on the 3-valued matrices. The aim of this paper is to provide (by using Dunn semantics) dual equivalent two-valued under-determined and over-determined interpretations for Ł3, Ł3a and Ł3b. The logic Ł3 is axiomatized as an extension of Routley (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The logic determined by Smiley’s matrix for Anderson and Belnap’s first-degree entailment logic.José M. Méndez & Gemma Robles - 2016 - Journal of Applied Non-Classical Logics 26 (1):47-68.
    The aim of this paper is to define the logical system Sm4 characterised by the degree of truth-preserving consequence relation defined on the ordered set of values of Smiley’s four-element matrix MSm4. The matrix MSm4 has been of considerable importance in the development of relevant logics and it is at the origin of bilattice logics. It will be shown that Sm4 is a most interesting paraconsistent logic which encloses a sound theory of logical necessity similar to that of Anderson and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Jaśkowski's criterion and three-valued paraconsistent logics.Alexander S. Karpenko - 1999 - Logic and Logical Philosophy 7:81.
    A survey is given of three-valued paraconsistent propositionallogics connected with Jaśkowski’s criterion for constructing paraconsistentlogics. Several problems are raised and four new matrix three-valued paraconsistent logics are suggested.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Partial and paraconsistent three-valued logics.Vincent Degauquier - 2016 - Logic and Logical Philosophy 25 (2):143-171.
    On the sidelines of classical logic, many partial and paraconsistent three-valued logics have been developed. Most of them differ in the notion of logical consequence or in the definition of logical connectives. This article aims, firstly, to provide both a model-theoretic and a proof-theoretic unified framework for these logics and, secondly, to apply these general frameworks to several well-known three-valued logics. The proof-theoretic approach to which we give preference is sequent calculus. In this perspective, several results concerning the properties of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation