Switch to: References

Add citations

You must login to add citations.
  1. Wittgenstein on Incompleteness Makes Paraconsistent Sense.Francesco Berto - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 257--276.
    I provide an interpretation of Wittgenstein's much criticized remarks on Gödel's First Incompleteness Theorem in the light of paraconsistent arithmetics: in taking Gödel's proof as a paradoxical derivation, Wittgenstein was right, given his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. I show that the models of paraconsistent arithmetics (obtained via the Meyer-Mortensen (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Distribution in the logic of meaning containment and in quantum mechanics.Ross T. Brady & Andrea Meinander - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 223--255.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Algebraic Kripke-Style Semantics for Relevance Logics.Eunsuk Yang - 2014 - Journal of Philosophical Logic 43 (4):803-826.
    This paper deals with one kind of Kripke-style semantics, which we shall call algebraic Kripke-style semantics, for relevance logics. We first recall the logic R of relevant implication and some closely related systems, their corresponding algebraic structures, and algebraic completeness results. We provide simpler algebraic completeness proofs. We then introduce various types of algebraic Kripke-style semantics for these systems and connect them with algebraic semantics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Free Semantics.Ross Thomas Brady - 2010 - Journal of Philosophical Logic 39 (5):511 - 529.
    Free Semantics is based on normalized natural deduction for the weak relevant logic DW and its near neighbours. This is motivated by the fact that in the determination of validity in truth-functional semantics, natural deduction is normally used. Due to normalization, the logic is decidable and hence the semantics can also be used to construct counter-models for invalid formulae. The logic DW is motivated as an entailment logic just weaker than the logic MC of meaning containment. DW is the logic (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Game-theoretic semantics for non-distributive logics.Chrysafis Hartonas - 2019 - Logic Journal of the IGPL 27 (5):718-742.
    We introduce game-theoretic semantics for systems without the conveniences of either a De Morgan negation, or of distribution of conjunction over disjunction and conversely. Much of game playing rests on challenges issued by one player to the other to satisfy, or refute, a sentence, while forcing him/her to move to some other place in the game’s chessboard-like configuration. Correctness of the game-theoretic semantics is proven for both a training game, corresponding to Positive Lattice Logic and for more advanced games for (...)
    Download  
     
    Export citation  
     
    Bookmark