Switch to: References

Citations of:

Varieties of Finitism

Metaphysica 8 (2):131-148 (2007)

Add citations

You must login to add citations.
  1. Is strict finitism arbitrary?Nuno Maia - forthcoming - Philosophical Quarterly.
    Strict finitism posits a largest natural number. The view is usually thought to be objectionably arbitrary. After all, there seems to be no apparent reason as to why the natural numbers should ‘stop’ at a specific point and not a bit later on the natural line. Drawing on how arguments from arbitrariness are employed in mereology, I propose several ways of understanding this objection against strict finitism. No matter how it is understood, I argue that it is always found wanting.
    Download  
     
    Export citation  
     
    Bookmark  
  • Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas' Goedelian Thesis.Bhupinder Singh Anand - 2016 - Cognitive Systems Research 40:35-45.
    We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments of satisfaction and truth (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Feng Ye. Strict Finitism and the Logic of Mathematical Applications.Nigel Vinckier & Jean Paul Van Bendegem - 2016 - Philosophia Mathematica 24 (2):247-256.
    Download  
     
    Export citation  
     
    Bookmark   1 citation