Switch to: References

Add citations

You must login to add citations.
  1. Mathematical constructivism in spacetime.Geoffrey Hellman - 1998 - British Journal for the Philosophy of Science 49 (3):425-450.
    To what extent can constructive mathematics based on intuitionistc logic recover the mathematics needed for spacetime physics? Certain aspects of this important question are examined, both technical and philosophical. On the technical side, order, connectivity, and extremization properties of the continuum are reviewed, and attention is called to certain striking results concerning causal structure in General Relativity Theory, in particular the singularity theorems of Hawking and Penrose. As they stand, these results appear to elude constructivization. On the philosophical side, it (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Discussion. Applied constructive mathematics: on Hellman's 'mathematical constructivism in spacetime'.H. Billinge - 2000 - British Journal for the Philosophy of Science 51 (2):299-318.
    claims that constructive mathematics is inadequate for spacetime physics and hence that constructive mathematics cannot be considered as an alternative to classical mathematics. He also argues that the contructivist must be guilty of a form of a priorism unless she adopts a strong form of anti-realism for science. Here I want to dispute both claims. First, even if there are non-constructive results in physics this does not show that adequate constructive alternatives could not be formulated. Secondly, the constructivist adopts a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantum mechanical unbounded operators and constructive mathematics – a rejoinder to Bridges.Geoffrey Hellman - 1997 - Journal of Philosophical Logic 26 (2):121-127.
    As argued in Hellman (1993), the theorem of Pour-El and Richards (1983) can be seen by the classicist as limiting constructivist efforts to recover the mathematics for quantum mechanics. Although Bridges (1995) may be right that the constructivist would work with a different definition of 'closed operator', this does not affect my point that neither the classical unbounded operators standardly recognized in quantum mechanics nor their restrictions to constructive arguments are recognizable as objects by the constructivist. Constructive substitutes that may (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Can constructive mathematics be applied in physics?Douglas S. Bridges - 1999 - Journal of Philosophical Logic 28 (5):439-453.
    The nature of modern constructive mathematics, and its applications, actual and potential, to classical and quantum physics, are discussed.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Toward a constructive theory of unbounded linear operators.Feng Ye - 2000 - Journal of Symbolic Logic 65 (1):357-370.
    We show that the following results in the classical theory of unbounded linear operators on Hilbert spaces can be proved within the framework of Bishop's constructive mathematics: the Kato-Rellich theorem, the spectral theorem, Stone's theorem, and the self-adjointness of the most common quantum mechanical operators, including the Hamiltonians of electro-magnetic fields with some general forms of potentials.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Gleason's theorem has a constructive proof.Fred Richman - 2000 - Journal of Philosophical Logic 29 (4):425-431.
    Gleason's theorem for ������³ says that if f is a nonnegative function on the unit sphere with the property that f(x) + f(y) + f(z) is a fixed constant for each triple x, y, z of mutually orthogonal unit vectors, then f is a quadratic form. We examine the issues raised by discussions in this journal regarding the possibility of a constructive proof of Gleason's theorem in light of the recent publication of such a proof.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A constructivist perspective on physics.Peter Fletcher - 2002 - Philosophia Mathematica 10 (1):26-42.
    This paper examines the problem of extending the programme of mathematical constructivism to applied mathematics. I am not concerned with the question of whether conventional mathematical physics makes essential use of the principle of excluded middle, but rather with the more fundamental question of whether the concept of physical infinity is constructively intelligible. I consider two kinds of physical infinity: a countably infinite constellation of stars and the infinitely divisible space-time continuum. I argue (contrary to Hellman) that these do not. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Set theory and physics.K. Svozil - 1995 - Foundations of Physics 25 (11):1541-1560.
    Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible “solution of supertasks,” and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for physical applications are discussed: (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations