Switch to: References

Add citations

You must login to add citations.
  1. Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Discussion. Applied constructive mathematics: on Hellman's 'mathematical constructivism in spacetime'.H. Billinge - 2000 - British Journal for the Philosophy of Science 51 (2):299-318.
    claims that constructive mathematics is inadequate for spacetime physics and hence that constructive mathematics cannot be considered as an alternative to classical mathematics. He also argues that the contructivist must be guilty of a form of a priorism unless she adopts a strong form of anti-realism for science. Here I want to dispute both claims. First, even if there are non-constructive results in physics this does not show that adequate constructive alternatives could not be formulated. Secondly, the constructivist adopts a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Proofs and Retributions, Or: Why Sarah Can’t Take Limits.Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz & Mary Schaps - 2015 - Foundations of Science 20 (1):1-25.
    The small, the tiny, and the infinitesimal have been the object of both fascination and vilification for millenia. One of the most vitriolic reviews in mathematics was that written by Errett Bishop about Keisler’s book Elementary Calculus: an Infinitesimal Approach. In this skit we investigate both the argument itself, and some of its roots in Bishop George Berkeley’s criticism of Leibnizian and Newtonian Calculus. We also explore some of the consequences to students for whom the infinitesimal approach is congenial. The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An Objection to Naturalism and Atheism from Logic.Christopher Gregory Weaver - 2019 - In Graham Oppy (ed.), A Companion to Atheism and Philosophy. Hoboken: Blackwell. pp. 451-475.
    I proffer a success argument for classical logical consequence. I articulate in what sense that notion of consequence should be regarded as the privileged notion for metaphysical inquiry aimed at uncovering the fundamental nature of the world. Classical logic breeds necessitism. I use necessitism to produce problems for both ontological naturalism and atheism.
    Download  
     
    Export citation  
     
    Bookmark  
  • La physique dans la recherche en mathématiques constructives.Vincent Ardourel - 2012 - Philosophia Scientiae 16 (1):183-208.
    Je propose d’analyser une pratique de la recherche en mathématiques constructives, celle qui consiste à reformuler constructivement les théories physiques. Je discute plus précisément trois aspects de cette pratique. Je montre d’abord que celle-ci a la particularité d’être motivée par des considérations philosophiques et comment la physique est utilisée pour arbitrer un débat de philosophie des mathématiques entre constructivisme et classicisme. Ensuite, j’identifie la méthodologie de la recherche en mathématiques que cette pratique implique et montre qu’il s’agit, selon une terminologie (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Toward a Clarity of the Extreme Value Theorem.Karin U. Katz, Mikhail G. Katz & Taras Kudryk - 2014 - Logica Universalis 8 (2):193-214.
    We apply a framework developed by C. S. Peirce to analyze the concept of clarity, so as to examine a pair of rival mathematical approaches to a typical result in analysis. Namely, we compare an intuitionist and an infinitesimal approaches to the extreme value theorem. We argue that a given pre-mathematical phenomenon may have several aspects that are not necessarily captured by a single formalisation, pointing to a complementarity rather than a rivalry of the approaches.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography.Karin Usadi Katz & Mikhail G. Katz - 2012 - Foundations of Science 17 (1):51-89.
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy’s foundational work associated with the work of Boyer and Grabiner; and to Bishop’s constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Scientific Pluralism.Stephen H. Kellert, Helen E. Longino & C. Kenneth Waters (eds.) - 1956 - Univ of Minnesota Press.
    Scientific pluralism is an issue at the forefront of philosophy of science. This landmark work addresses the question, Can pluralism be advanced as a general, philosophical interpretation of science?
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Feng Ye , Strict Finitism and the Logic of Mathematical Applications . Reviewed by.Maarten Mckubre-Jordens - 2014 - Philosophy in Review 34 (5):278-281.
    Download  
     
    Export citation  
     
    Bookmark  
  • Roads to Mathematical Pluralism: Some Pointers.Amita Chatterjee - 2017 - Journal of the Indian Council of Philosophical Research 34 (2):209-225.
    IntroductionScientific pluralism is generally understood in the backdrop of scientific monism. So is mathematical pluralism. Though there are many culture-dependent mathematical practices, mathematical concepts and theories are generally taken to be culture invariant. We would like to explore in this paper whether mathematical pluralism is admissible or not.Materials and methodsMathematical pluralism may be approached at least from five different perspectives. 1. Foundational: The view would claim that different issues within mathematics need support of different foundations, apparently incompatible with one another. (...)
    Download  
     
    Export citation  
     
    Bookmark