Switch to: References

Add citations

You must login to add citations.
  1. On the ideal J[κ].Assaf Rinot - 2022 - Annals of Pure and Applied Logic 173 (2):103055.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Knaster and Friends III: Subadditive Colorings.Chris Lambie-Hanson & Assaf Rinot - 2023 - Journal of Symbolic Logic 88 (3):1230-1280.
    We continue our study of strongly unbounded colorings, this time focusing on subadditive maps. In Part I of this series, we showed that, for many pairs of infinite cardinals $\theta < \kappa $, the existence of a strongly unbounded coloring $c:[\kappa ]^2 \rightarrow \theta $ is a theorem of $\textsf{ZFC}$. Adding the requirement of subadditivity to a strongly unbounded coloring is a significant strengthening, though, and here we see that in many cases the existence of a subadditive strongly unbounded coloring (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Square with built-in diamond-plus.Assaf Rinot & Ralf Schindler - 2017 - Journal of Symbolic Logic 82 (3):809-833.
    We formulate combinatorial principles that combine the square principle with various strong forms of the diamond principle, and prove that the strongest amongst them holds inLfor every infinite cardinal.As an application, we prove that the following two hold inL:1.For every infinite regular cardinalλ, there exists a special λ+-Aronszajn tree whose projection is almost Souslin;2.For every infinite cardinalλ, there exists arespectingλ+-Kurepa tree; Roughly speaking, this means that this λ+-Kurepa tree looks very much like the λ+-Souslin trees that Jensen constructed inL.
    Download  
     
    Export citation  
     
    Bookmark   1 citation