Switch to: References

Citations of:

Bunched Logics Displayed

Studia Logica 100 (6):1223-1254 (2012)

Add citations

You must login to add citations.
  1. Universal proof theory: Semi-analytic rules and Craig interpolation.Amirhossein Akbar Tabatabai & Raheleh Jalali - 2025 - Annals of Pure and Applied Logic 176 (1):103509.
    Download  
     
    Export citation  
     
    Bookmark  
  • Separation logics and modalities: a survey.Stéphane Demri & Morgan Deters - 2015 - Journal of Applied Non-Classical Logics 25 (1):50-99.
    Like modal logic, temporal logic, and description logic, separation logic has become a popular class of logical formalisms in computer science, conceived as assertion languages for Hoare-style proof systems with the goal to perform automatic program analysis. In a broad sense, separation logic is often understood as a programming language, an assertion language and a family of rules involving Hoare triples. In this survey, we present similarities between separation logic as an assertion language and modal and temporal logics. Moreover, we (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hypersequent and Display Calculi – a Unified Perspective.Agata Ciabattoni, Revantha Ramanayake & Heinrich Wansing - 2014 - Studia Logica 102 (6):1245-1294.
    This paper presents an overview of the methods of hypersequents and display sequents in the proof theory of non-classical logics. In contrast with existing surveys dedicated to hypersequent calculi or to display calculi, our aim is to provide a unified perspective on these two formalisms highlighting their differences and similarities and discussing applications and recent results connecting and comparing them.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Semantical Analysis of the Logic of Bunched Implications.Alexander V. Gheorghiu & David J. Pym - 2023 - Studia Logica 111 (4):525-571.
    We give a novel approach to proving soundness and completeness for a logic (henceforth: the object-logic) that bypasses truth-in-a-model to work directly with validity. Instead of working with specific worlds in specific models, we reason with eigenworlds (i.e., generic representatives of worlds) in an arbitrary model. This reasoning is captured by a sequent calculus for a _meta_-logic (in this case, first-order classical logic) expressive enough to capture the semantics of the object-logic. Essentially, one has a calculus of validity for the (...)
    Download  
     
    Export citation  
     
    Bookmark