Switch to: References

Add citations

You must login to add citations.
  1. Entropy and information in evolving biological systems.Daniel R. Brooks, John Collier, Brian A. Maurer, Jonathan D. H. Smith & E. O. Wiley - 1989 - Biology and Philosophy 4 (4):407-432.
    Integrating concepts of maintenance and of origins is essential to explaining biological diversity. The unified theory of evolution attempts to find a common theme linking production rules inherent in biological systems, explaining the origin of biological order as a manifestation of the flow of energy and the flow of information on various spatial and temporal scales, with the recognition that natural selection is an evolutionarily relevant process. Biological systems persist in space and time by transfor ming energy from one state (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Probabilistic causation and the explanatory role of natural selection.Pablo Razeto-Barry & Ramiro Frick - 2011 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 42 (3):344-355.
    The explanatory role of natural selection is one of the long-term debates in evolutionary biology. Nevertheless, the consensus has been slippery because conceptual confusions and the absence of a unified, formal causal model that integrates different explanatory scopes of natural selection. In this study we attempt to examine two questions: (i) What can the theory of natural selection explain? and (ii) Is there a causal or explanatory model that integrates all natural selection explananda? For the first question, we argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Increases in environmental entropy demand evolution.Georg Schulze & Shuji Mori - 1993 - Acta Biotheoretica 41 (3):149-164.
    An application of the entropic theory of perception to evolutionary systems indicates that environmental entropy increases will exert pressures on an organism to adapt. We speculate that the instability caused by such environmental changes will also cause an increase in the mutation rate of organisms leading to an eventual increase in their complexity. Such complexity generation allows organisms to adapt to the more entropic environment. Although we conclude that increases in environmental entropy cause an organism to evolve into a more (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation