Switch to: References

Add citations

You must login to add citations.
  1. How can a line segment with extension be composed of extensionless points?Brian Reese, Michael Vazquez & Scott Weinstein - 2022 - Synthese 200 (2):1-28.
    We provide a new interpretation of Zeno’s Paradox of Measure that begins by giving a substantive account, drawn from Aristotle’s text, of the fact that points lack magnitude. The main elements of this account are (1) the Axiom of Archimedes which states that there are no infinitesimal magnitudes, and (2) the principle that all assignments of magnitude, or lack thereof, must be grounded in the magnitude of line segments, the primary objects to which the notion of linear magnitude applies. Armed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Finding paths through narrow and wide trees.Stephen Binns & Bjørn Kjos-Hanssen - 2009 - Journal of Symbolic Logic 74 (1):349-360.
    We consider two axioms of second-order arithmetic. These axioms assert, in two different ways, that infinite but narrow binary trees always have infinite paths. We show that both axioms are strictly weaker than Weak König's Lemma, and incomparable in strength to the dual statement (WWKL) that wide binary trees have paths.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fundamental notions of analysis in subsystems of second-order arithmetic.Jeremy Avigad - 2006 - Annals of Pure and Applied Logic 139 (1):138-184.
    We develop fundamental aspects of the theory of metric, Hilbert, and Banach spaces in the context of subsystems of second-order arithmetic. In particular, we explore issues having to do with distances, closed subsets and subspaces, closures, bases, norms, and projections. We pay close attention to variations that arise when formalizing definitions and theorems, and study the relationships between them.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Mass problems and measure-theoretic regularity.Stephen G. Simpson - 2009 - Bulletin of Symbolic Logic 15 (4):385-409.
    A well known fact is that every Lebesgue measurable set is regular, i.e., it includes an F$_{\sigma}$ set of the same measure. We analyze this fact from a metamathematical or foundational standpoint. We study a family of Muchnik degrees corresponding to measure-theoretic regularity at all levels of the effective Borel hierarchy. We prove some new results concerning Nies's notion of LR-reducibility. We build some $\omega$-models of RCA$_0$which are relevant for the reverse mathematics of measure-theoretic regularity.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mass problems and randomness.Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (1):1-27.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if every member of Q Turing computes a member of P. We say that P is strongly reducible to Q if every member of Q Turing computes a member of P via a fixed Turing functional. The weak degrees and strong degrees are the equivalence classes of mass problems under weak and strong reducibility, respectively. We (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • A Nonstandard Counterpart of WWKL.Stephen G. Simpson & Keita Yokoyama - 2011 - Notre Dame Journal of Formal Logic 52 (3):229-243.
    In this paper, we introduce a system of nonstandard second-order arithmetic $\mathsf{ns}$-$\mathsf{WWKL_0}$ which consists of $\mathsf{ns}$-$\mathsf{BASIC}$ plus Loeb measure property. Then we show that $\mathsf{ns}$-$\mathsf{WWKL_0}$ is a conservative extension of $\mathsf{WWKL_0}$ and we do Reverse Mathematics for this system.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Dirac delta function in two settings of Reverse Mathematics.Sam Sanders & Keita Yokoyama - 2012 - Archive for Mathematical Logic 51 (1-2):99-121.
    The program of Reverse Mathematics (Simpson 2009) has provided us with the insight that most theorems of ordinary mathematics are either equivalent to one of a select few logical principles, or provable in a weak base theory. In this paper, we study the properties of the Dirac delta function (Dirac 1927; Schwartz 1951) in two settings of Reverse Mathematics. In particular, we consider the Dirac Delta Theorem, which formalizes the well-known property \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Set existence principles and closure conditions: unravelling the standard view of reverse mathematics.Benedict Eastaugh - 2019 - Philosophia Mathematica 27 (2):153-176.
    It is a striking fact from reverse mathematics that almost all theorems of countable and countably representable mathematics are equivalent to just five subsystems of second order arithmetic. The standard view is that the significance of these equivalences lies in the set existence principles that are necessary and sufficient to prove those theorems. In this article I analyse the role of set existence principles in reverse mathematics, and argue that they are best understood as closure conditions on the powerset of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Almost everywhere domination.Natasha L. Dobrinen & Stephen G. Simpson - 2004 - Journal of Symbolic Logic 69 (3):914-922.
    A Turing degree a is said to be almost everywhere dominating if, for almost all $X \in 2^{\omega}$ with respect to the "fair coin" probability measure on $2^{\omega}$ , and for all g: $\omega \rightarrow \omega$ Turing reducible to X, there exists f: $\omega \rightarrow \omega$ of Turing degree a which dominates g. We study the problem of characterizing the almost everywhere dominating Turing degrees and other, similarly defined classes of Turing degrees. We relate this problem to some questions in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Comparing DNR and WWKL.Klaus Ambos-Spies, Bjørn Kjos-Hanssen, Steffen Lempp & Theodore A. Slaman - 2004 - Journal of Symbolic Logic 69 (4):1089-1104.
    In Reverse Mathematics, the axiom system DNR, asserting the existence of diagonally non-recursive functions, is strictly weaker than WWKL0.
    Download  
     
    Export citation  
     
    Bookmark   6 citations