Switch to: References

Add citations

You must login to add citations.
  1. On Heisenberg's Notion of a Closed Theory (2013).Francois-Igor Pris - manuscript
    I claim that Heisenberg’s notion of a closed theory and its analysis by Erhard Scheibe fit well with the philosophy of later Wittgenstein or its generalization. The notion of a closed theory corresponds to the notions of a form of life and rule/concept. I suggest the possibility of reconciling the views of Heisenberg, Dirac, and Bohr about inter-theoretical relations within a rational naturalistic pragmatism à la Wittgenstein and Robert Brandom’s analytic interpretation of Kantian synthetic unity of apperception. In particular, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Copenhagen interpretation of quantum mechanics.Jan Faye - 2008 - Stanford Encyclopedia of Philosophy.
    As the theory of the atom, quantum mechanics is perhaps the most successful theory in the history of science. It enables physicists, chemists, and technicians to calculate and predict the outcome of a vast number of experiments and to create new and advanced technology based on the insight into the behavior of atomic objects. But it is also a theory that challenges our imagination. It seems to violate some fundamental principles of classical physics, principles that eventually have become a part (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Phenomenology, Ontology, and Quantum Physics.Patrick A. Heelan - 2013 - Foundations of Science 18 (2):379-385.
    This essay is dominated by three themes that recur contrapuntally in Heisenberg’s writings: observation, description, and ontology—prompted always by a concern about the role played by the subjective inquirer in scientific meaning-making, and by the ontology of scientific claims. Among the related themes are; the tension between paradigmatic concerns with structure and philosophical concerns with reality, the possibility of scientific revolutions, such as relativity and quantum mechanics, that can overthrow the classical traditions of natural science and the inadequacy of a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bohr’s Complementarity Framework in Biosemiotics.Filip Grygar - 2017 - Biosemiotics 10 (1):33-55.
    This paper analyses Bohr’s complementarity framework and applies it to biosemiotic studies by illustrating its application to three existing models of living systems: mechanistic biology, Barbieri’s version of biosemiotics in terms of his code biology and Markoš’s phenomenological version of hermeneutic biosemiotics. The contribution summarizes both Bohr’s philosophy of science crowned by his idea of complementarity and his conception of the phenomenon of the living. Bohr’s approach to the biological questions evolved – among other things – from the consequences of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)‘But one must not legalize the mentioned sin’: Phenomenological vs. dynamical treatments of rods and clocks in Einstein׳s thought.Marco Giovanelli - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (1):20-44.
    The paper offers a historical overview of Einstein's oscillating attitude towards a "phenomenological" and "dynamical" treatment of rods and clocks in relativity theory. Contrary to what it has been usually claimed in recent literature, it is argued that this distinction should not be understood in the framework of opposition between principle and constructive theories. In particular Einstein does not seem to have plead for a "dynamical" explanation for the phenomenon rods contraction and clock dilation which was initially described only "kinematically". (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Interpreting Heisenberg interpreting quantum states.Simon Friederich - 2012 - Philosophia Naturalis 50 (1):85-114.
    The paper investigates possible readings of the later Heisenberg's remarks on the nature of quantum states. It discusses, in particular, whether Heisenberg should be seen as a proponent of the epistemic conception of states – the view that quantum states are not descriptions of quantum systems but rather reflect the state assigning observers' epistemic relations to these systems. On the one hand, it seems plausible that Heisenberg subscribes to that view, given how he defends the notorious "collapse of the wave (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Visualization as a Tool for Understanding.Henk W. de Regt - 2014 - Perspectives on Science 22 (3):377-396.
    The act of understanding is at the heart of all scientific activity; without it any ostensibly scientific activity is as sterile as that of a high school student substituting numbers into a formula. Ordinary language often uses visual metaphors in connection with understanding. When we finally understand what someone is trying to point out to us, we exclaim: “I see!” When someone really understands a subject matter, we say that she has “insight”. There appears to be a link between visualization (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations