Switch to: References

Add citations

You must login to add citations.
  1. Pseudointersection numbers, ideal slaloms, topological spaces, and cardinal inequalities.Jaroslav Šupina - 2023 - Archive for Mathematical Logic 62 (1):87-112.
    We investigate several ideal versions of the pseudointersection number \(\mathfrak {p}\), ideal slalom numbers, and associated topological spaces with the focus on selection principles. However, it turns out that well-known pseudointersection invariant \(\mathtt {cov}^*({\mathcal I})\) has a crucial influence on the studied notions. For an invariant \(\mathfrak {p}_\mathrm {K}({\mathcal J})\) introduced by Borodulin-Nadzieja and Farkas (Arch. Math. Logic 51:187–202, 2012), and an invariant \(\mathfrak {p}_\mathrm {K}({\mathcal I},{\mathcal J})\) introduced by Repický (Real Anal. Exchange 46:367–394, 2021), we have $$\begin{aligned} \min \{\mathfrak (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Convergence of measures after adding a real.Damian Sobota & Lyubomyr Zdomskyy - 2023 - Archive for Mathematical Logic 63 (1):135-162.
    We prove that if $$\mathcal {A}$$ A is an infinite Boolean algebra in the ground model V and $$\mathbb {P}$$ P is a notion of forcing adding any of the following reals: a Cohen real, an unsplit real, or a random real, then, in any $$\mathbb {P}$$ P -generic extension V[G], $$\mathcal {A}$$ A has neither the Nikodym property nor the Grothendieck property. A similar result is also proved for a dominating real and the Nikodym property.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the cofinality of ultrapowers.Andreas Blass & Heike Mildenberger - 1999 - Journal of Symbolic Logic 64 (2):727-736.
    We prove some restrictions on the possible cofinalities of ultrapowers of the natural numbers with respect to ultrafilters on the natural numbers. The restrictions involve three cardinal characteristics of the continuum, the splitting number s, the unsplitting number r, and the groupwise density number g. We also prove some related results for reduced powers with respect to filters other than ultrafilters.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Game sentences and ultrapowers.Renling Jin & H. Jerome Keisler - 1993 - Annals of Pure and Applied Logic 60 (3):261-274.
    We prove that if is a model of size at most [kappa], λ[kappa] = λ, and a game sentence of length 2λ is true in a 2λ-saturated model ≡ , then player has a winning strategy for a related game in some ultrapower ΠD of . The moves in the new game are taken in the cartesian power λA, and the ultrafilter D over λ must be chosen after the game is played. By taking advantage of the expressive power of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Meager sets on the hyperfinite time line.H. Jerome Keisler & Steven C. Leth - 1991 - Journal of Symbolic Logic 56 (1):71-102.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Lebesgue Measure Zero Modulo Ideals on the Natural Numbers.Viera Gavalová & Diego A. Mejía - forthcoming - Journal of Symbolic Logic:1-31.
    We propose a reformulation of the ideal $\mathcal {N}$ of Lebesgue measure zero sets of reals modulo an ideal J on $\omega $, which we denote by $\mathcal {N}_J$. In the same way, we reformulate the ideal $\mathcal {E}$ generated by $F_\sigma $ measure zero sets of reals modulo J, which we denote by $\mathcal {N}^*_J$. We show that these are $\sigma $ -ideals and that $\mathcal {N}_J=\mathcal {N}$ iff J has the Baire property, which in turn is equivalent to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Yet Another Ideal Version of the Bounding Number.Rafał Filipów & Adam Kwela - 2022 - Journal of Symbolic Logic 87 (3):1065-1092.
    Let $\mathcal {I}$ be an ideal on $\omega $. For $f,\,g\in \omega ^{\omega }$ we write $f \leq _{\mathcal {I}} g$ if $f(n) \leq g(n)$ for all $n\in \omega \setminus A$ with some $A\in \mathcal {I}$. Moreover, we denote $\mathcal {D}_{\mathcal {I}}=\{f\in \omega ^{\omega }: f^{-1}[\{n\}]\in \mathcal {I} \text { for every } n\in \omega \}$ (in particular, $\mathcal {D}_{\mathrm {Fin}}$ denotes the family of all finite-to-one functions).We examine cardinal numbers $\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathcal {I}} \times \mathcal {D}_{\mathcal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Small Filter forcing.R. Michael Canjar - 1986 - Journal of Symbolic Logic 51 (3):526-546.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the length of chains of proper subgroups covering a topological group.Taras Banakh, Dušan Repovš & Lyubomyr Zdomskyy - 2011 - Archive for Mathematical Logic 50 (3-4):411-421.
    We prove that if an ultrafilter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} is not coherent to a Q-point, then each analytic non-σ-bounded topological group G admits an increasing chain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle G_\alpha:\alpha < \mathfrak b(\mathcal L)\rangle}$$\end{document} of its proper subgroups such that: (i) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bigcup_{\alpha}G_\alpha=G}$$\end{document}; and (ii) For every σ-bounded subgroup H of G there exists α such that \documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cuts in hyperfinite time lines.Renling Jin - 1992 - Journal of Symbolic Logic 57 (2):522-527.
    In an ω1-saturated nonstandard universe a cut is an initial segment of the hyperintegers which is closed under addition. Keisler and Leth in [KL] introduced, for each given cut U, a corresponding U-topology on the hyperintegers by letting O be U-open if for any x ∈ O there is a y greater than all the elements in U such that the interval $\lbrack x - y, x + y\rbrack \subseteq O$ . Let U be a cut in a hyperfinite time (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • U-monad topologies of hyperfinite time lines.Renling Jin - 1992 - Journal of Symbolic Logic 57 (2):534-539.
    In an ω1-saturated nonstandard universe a cut is an initial segment of the hyperintegers which is closed under addition. Keisler and Leth in [KL] introduced, for each given cut U, a corresponding U-topology on the hyperintegers by letting O be U-open if for any x ∈ O there is a y greater than all the elements in U such that the interval $\lbrack x - y, x + y\rbrack \subseteq O$ . Let U be a cut in a hyperfinite time (...)
    Download  
     
    Export citation  
     
    Bookmark